Measuring Gene Expression Part 3

David Wishart Bioinformatics 301 david.wishart@ualberta.ca

Objectives*

- Become aware of some of the causes of low quality microarray data
- Become familiar with gridding, spot picking, intensity determination & quality control issues
- Become familiar with normalization, curve fitting and correlation
- Understand how microarray data is analyzed

Key Steps in Microarray Analysis*

- Quality Control (checking microarrays for errors or problems)
- Image Processing
 - Gridding
 - Segmentation (peak picking)
 - Data Extraction (intensity, QC)
- Data Analysis and Data Mining

Comet Tailing*

 Often caused by insufficiently rapid immersion of the slides in the succinic anhydride blocking solution.

Uneven Spotting/Blotting

- Problems with print tips or with overly viscous solution
- Problems with humidity in spottiing chamber

Gridding Errors

Key Steps in Microarray Analysis

- Quality Control (checking microarrays for errors or problems)
- Image Processing
 - Gridding
 - Segmentation (spot picking)
 - Data Extraction (intensity, QC)
- Data Analysis and Data Mining

Microarray Principles*

Microarray Images

Resolution

- standard 10μm [currently, max 5μm]
- 100 μ m spot on chip = 10 pixels in diameter
- Image format
 - TIFF (tagged image file format) 16 bit (64K grey levels)
 - 1cm x 1cm image at 16 bit = 2Mb (uncompressed)
 - other formats exist i.e. SCN (Stanford University)
- Separate image for each fluorescent sample
 channel 1, channel 2, etc.

Image Processing*

- Addressing or gridding
 - Assigning coordinates to each of the spots
- Segmentation or spot picking
 - Classifying pixels either as foreground or as background
- Intensity extraction (for each spot)
 - Foreground fluorescence intensity pairs (R, G)
 - Background intensities
 - Quality measures

Gridding

Gridding Considerations*

- Separation between rows and columns of grids
- Individual translation of grids
- Separation between rows and columns of spots within each grid
- Small individual translation of spots
- Overall position of the array in the image
- Automated & manual methods available

Spot Picking

- Classification of pixels as foreground or background (fluorescence intensities determined for each spot are a measure of transcript abundance)
- Large selection of methods available, each has strengths & weaknesses

Spot Picking*

- Segmentation/spot picking methods:
 - Fixed circle segmentation
 - Adaptive circle segmentation
 - Adaptive shape segmentation
 - Histogram segmentation

Fixed circle	ScanAlyze, GenePix, QuantArray
Adaptive circle	GenePix, Dapple
Adaptive shape	Spot, region growing and watershed
Histogram method	ImaGene, QuantArraym DeArray and adaptive thresholding

Fixed Circle Segmentation*

Adaptive Circle Segmentation*

- The circle diameter is estimated separately for each spot
- GenePix finds spots by detecting edges of spots (second derivative)
- Problematic if spot exhibits oval shapes

Adaptive Circle Segmentation

Information Extraction

- Spot Intensities
 - mean (pixel intensities)
 - median (pixel intensities)
- Background values
 - Local Background
 - Morphological opening
 - Constant (global)
- Quality Information

Take the average

Spot Intensity*

- The total amount of hybridization for a spot is proportional to the *total fluorescence* at the spot
- Spot intensity = sum of pixel intensities within the spot mask
- Since later calculations are based on ratios between cy5 and cy3, we compute the average* pixel value over the spot mask
- Can use ratios of medians instead of means

Means vs. Medians*

row	col	ch1_sig_mea	ch2_sig_mea	ch1_sig_med	ch2_sig_med
1	1	56000	2000	58000	1900
1	2	1000	600	600	800
1	3	2000	60000	3000	59000
			etc.		

Mean, Median & Mode

Mean, Median, Mode*

- In a Normal Distribution the mean, mode and median are all equal
- In skewed distributions they are unequal
- Mean average value, affected by extreme values in the distribution
- Median the "middlemost" value, usually half way between the mode and the mean
- Mode most common value

Background Intensity

- A spot's measured intensity includes a contribution of nonspecific hybridization and other chemicals on the glass
- Fluorescence intensity from regions not occupied by DNA can be different from regions occupied by DNA

Local Background Methods*

- Focuses on small regions around spot mask
- Determine median pixel values in this region
- Most common approach

ScanAlyze

ImaGene

Spot, GenePix

 By not considering the pixels immediately surrounding the spots, the background estimate is less sensitive to the performance of the segmentation procedure

Quality Measurements*

- Array
 - Correlation between spot intensities
 - Percentage of spots with no signals
 - Distribution of spot signal area
 - Inter-array consistency
- Spot
 - Signal / Noise ratio
 - Variation in pixel intensities
 - ID of "bad spots" (spots with no signal)

A Microarray Scatter Plot

Cy3 (green) intensity

Correlation*

Correlation

"+" correlation

Uncorrelated

"-" correlation

Correlation

High correlation

Low correlation

Perfect correlation

Correlation Coefficient*

$$\mathbf{r} = \frac{\Sigma(\mathbf{x}_i - \mu_x)(\mathbf{y}_i - \mu_y)}{\sqrt{\Sigma(\mathbf{x}_i - \mu_x)^2(\mathbf{y}_i - \mu_y)^2}}$$

r = 0.85

Correlation Coefficient

- Sometimes called coefficient of linear correlation or Pearson product-moment correlation coefficient
- A quantitative way of determining what model (or equation or type of line) best fits a set of data
- Commonly used to assess most kinds of predictions or simulations

Correlation and Outliers

A single "bad" point can destroy a good correlation

Outliers*

- Can be both "good" and "bad"
- When modeling data -- you don't like to see outliers (suggests the model is bad)
- Often a good indicator of experimental or measurement errors -- only you can know!
- When plotting gel or microarray expression data you do like to see outliers
- A good indicator of something significant

Log Transformation*

linear scale

 \log_2 scale

Choice of Base is Not Important log₁₀ In

Why Log₂ Transformation?*

- Makes variation of intensities and ratios of intensities more independent of absolute magnitude
- Makes normalization additive
- Evens out highly skewed distributions
- Gives more realistic sense of variation
- Approximates normal distribution
- Treats up- and down- regulated genes symmetrically

Log Transformations

Applying a log transformation makes the variance and offset more proportionate along the entire graph

<u>ch1</u>	<u>ch2</u>	<u>ch1/ch2</u>
60 000	40 000	1.5
3000	2000	1.5
<u>log₂ ch1</u>	<u>log₂ ch2</u>	<u>log₂ ratio</u>
15.87	15.29	0.58
11.55	10.97	0.58

Log Transformations*

Log(Intensity)

Log Transformation

Normalization*

- Reduces systematic (multiplicative) differences between two channels of a single hybridization or differences between hybridizations
- Several Methods:
 - Global mean method
 - (Iterative) linear regression method
 - Curvilinear methods (e.g. loess)
 - Variance model methods

Try to get a slope ~1 and a correlation of ~1

Example Where Normalization is Needed

Example Where Normalization is Not Needed

Normalization to a Global Mean*

- Calculate mean intensity of all spots in ch1 and ch2
 - $-e.g. \mu ch2 = 25\,000 \quad \mu ch2/\mu ch1 = 1.25$

- $\mu ch1 = 20\,000$

- On average, spots in ch2 are 1.25X brighter than spots in ch1
- To normalize, multiply spots in ch1 by 1.25

Visual Example: Ch2 is too Strong

Ch 2

Ch1 + Ch2

Visual Example: Ch2 and Ch1 are Balanced

Ch 2

Ch1 + Ch2

Pre-normalized Data

Normalized Microarray Data

ch1 log₂ signal intensity

Normalization to Loess Curve*

- A curvilinear form of normalization
- For each spot, plot ratio vs. mean (ch1,ch2) signal in log scale (A vs. M)
- Use statistical programs (e.g. S-plus, SAS, or R) to fit a loess curve (local regression) through the data
- Offset from this curve is the normalized expression ratio

The A versus M Plot*

A vs. M Plot

More Informative Graph

Prior To Normalization

Non-normalized data $\{(M,A)\}_{n=1..5184}$: $M = \log_2(R/G)$

Global (Loess) Normalization

dUDG414

Quality Measurements

- Array
 - Correlation between spot intensities
 - Percentage of spots with no signals
 - Distribution of spot signal area
 - Inter-array consistency
- Spot
 - Signal / Noise ratio
 - Variation in pixel intensities
 - ID of "bad spots" (spots with no signal)

Quality Assessment

OK quality

High quality

Inter-Array Consistency*

Pre-normalized

Normalized

Quality Assessment

High Quality Array

High Quality Array

Good Quality Array

Poor Quality Array

Poor Quality Array

1)	R=1	95%Cl=(1-1)	N=8258
2)	R=0.99	95%Cl=(0.99-1)	N=8332
3)	R=0.99	95%Cl=(0.99-0.99)	N=8290

1)	R=0.98	95%Cl=(0.98-0.98)	N=7694
2)	R=0.97	95%Cl=(0.97-0.98)	N=7873
3)	R=0.97	95%Cl=(0.97-0.97)	N=7694

Final Result

Ingin	
Trx	16.8
Enh1	13.2
Hin2	11.8
P53	8.4
Calm	7.3
Ned3	5.6
P21	5.5
Antp	5.4
Gad2	5.2
Gad3	5.1
Erp3	5.0

Lighly Evp

Reduced Exp

GPD 0.11 Shn2 0.13 Alp4 0.22 **OncB** 0.23 Nrd1 0.25 LamR 0.26 SetH 0.30 LinK 0.32 Mrd2 0.32 Mrd3 0.33 TshR 0.34

Fold change

Key Steps in Microarray Analysis

- Quality Control (checking microarrays for errors or problems)
- Image Processing
 - Gridding
 - Segmentation (peak picking)
 - Data Extraction (intensity, QC)
- Data Analysis and Data Mining (Differential gene expression)

Identifying Patterns of Gene Expression*

- Key Goal: identify differentially & coregulated groups of genes via clustering
- This leads to:
 - inferences about physiological responses
 - generalizations about large data sets
 - identification of regulatory cascades
 - assignment of possible function to uncharacterized genes
 - identification of shared regulatory motifs

Clustering Applications in Bioinformatics*

- Microarray or GeneChip Analysis
- 2D Gel or ProteinChip Analysis
- Protein Interaction Analysis
- Phylogenetic and Evolutionary Analysis
- Structural Classification of Proteins
- Protein Sequence Families

Clustering*

- Definition a process by which objects that are logically similar in characteristics are grouped together.
- Clustering is different than Classification
- In classification the objects are assigned to pre-defined classes, in clustering the classes are yet to be defined
- Clustering helps in classification

Clustering Requires...

- A method to measure similarity (a similarity matrix) or dissimilarity (a dissimilarity coefficient) between objects
- A threshold value with which to decide whether an object belongs with a cluster
- A way of measuring the "distance" between two clusters
- A cluster seed (an object to begin the clustering process)

Clustering Algorithms*

- K-means or Partitioning Methods divides a set of N objects into M clusters -- with or without overlap
- Hierarchical Methods produces a set of nested clusters in which each pair of objects is progressively nested into a larger cluster until only one cluster remains
- Self-Organizing Feature Maps produces a cluster set through iterative "training"

Hierarchical Clustering*

- Find the two closest objects and merge them into a cluster
- Find and merge the next two closest objects (or an object and a cluster, or two clusters) using some similarity measure and a predefined threshold
- If more than one cluster remains return to step 2 until finished

Hierarchical Clustering*

Rule: $\lambda_{T} = \lambda_{obs} \pm 50 \text{ nm}$

1		1	 400

Hierarchical Clustering*

Heat map

Results

Normal

Adenocarcinoma

Adenoma

90 Allin hear-shock protein (XC1113) Estenase D, Final (MI15430) Glutamatia receptor 1 alphacimGlu811alphac0U812150 Ribosomal protein \$29 (U14973) Homelogue of net insultaness gene (rig) (ND3405) Ribosomal protein \$25 (MB4716) Alpha-tubulin isotge EC-slylu gene(KI1400) Humal mRNA for 405 ethoprotein al (X01711) Ribosomal princis SP (UL4971) mRNA for glutathing percentage-CE(2018214) p62 m855A/M881081 RhAp48 ratinoblastona binding protein (X74262) Callopsin C (087212) Procerberograptidase B (M81057) X hos binding protein-1 (XDP-1 (M31627) Splicing latter SBpNIs (U30625) High mobility group ben (SSRP1) (MM4737). Exytheriblast. virus one homolog 2(sta-2) (314182) NBK apoptotic inducer (X89986) 903X-9 (2546429)

Cluster 1

acres 1973 (D60741) TRAP Into exhanit (XCH) (H) MI suburit of ribernucleotide reductore (X19543) M1 address of representation to relations (X1994) (22 SeRXP+specific A* provide (X1994)) Differentiation dependent A4 provide (X1994) Materlagen (22124) Materlagen (22124) Partice As california da Materlagen (X1974) Partice As california da Immunophilis (FK1972); (M852)70; Charmsonie augregation game (125204); K1A4064 gave (2011085) DMA-1 (261874) Blome sugiese Tod/DPF p source (128010) Blome sugiese Tod/DPF p source (128010) Molarowa growth (Broncherry activity/MK204); (251828) Molarowatania gaveth (Broncherry activity/MK204); (251828) Stationardinaria gaveth (Broncherry activity/MK204); (251828) Serine Kinese mRNA (UNV064) Lanas B edDAA (MD4478) Casein kinase il beta subunit (MD0448). Gipcyl (RNA synthetase (L09187) cloha? mRNA for Clait tesnologue (304942) mitochondrial specific single mondeal DNA by (https://dthattes/ Historyc (HEA.Z) mRNA (MUTTRT) Mitrichold/al matrix protein P1 (M22342) Minechandrad matrix pointes P1 (ME2182) dealeri mBRA für Chal pointes homologue (CD4941)) Pprovine 5-celoreplane industries (MP1036) mRNA gane for hall/N-C pointes (CZ10461) Terrabaleridise deforegament cyclologie (CD4096) KEAAB002 gane (CD19627) balk/NPcom previos AL (CO4956) DNA (cyclose 1)-methyllementese (BL0492) Transformet for (cB7-2), sights sub. (R0445) Prostances undustrie IEG (CD2072) Protoasone subusit HCB (D007%2) Hatercogeneous machine RNP protein, L promin (X0.6133) ATP-citote Space (X04333) KIAAHON gene (D14817 KIAAH159 gene (Did 978) Lactate delptingenase: A. (M2012) Nucleic acid binding promis sub2.3 (J29581) O27 sdDNA.(J27854) Importin beta subscatt (L10951) 778 manocatal advices factor(X20944) p23 mRNA (L24804) hel gene (M904513 GPI-anchored protote pi 37 (248042) 1942 person of signal recognition particle (20:2791) Pratrice RNA binding protein RNP(, mRNA,(1/28088)) Interim proclated minimi (225521)

Normal

Adenocarcinoma

Adenoma

90-kDa hear-shock protein (XC1183) Estenase D, Funal (M13430) Gutamate receptor 1 alpha/mGu/H1alpha/UU312155 Ribosomal proteix \$29 (U14973) Honselogue of net insultaness gene (rig) (MD3401) Ribosomal protein \$25 (MB471/6) Alpha-tubulin isotope TC-sipha penet/E214003 Humal mRNA for 405 elloprotein al (XS1711) Ribosomal princis 59 (L/L4971) siRNA for glutathione percendase-GE(2018214) p62 m855A5881081 RhAp48 ratinoblastona binding protein (X74262) Callepsia C (007212) Price/herographidase B (M81057) X hos binding protein-1 (XDIP-1 (M31627) Splicing Easter SRphile (U10821) High mobility group ben (SSRPI) (MM4737) Erytheoldast, virus one homolog 2(sta-2) (314182) NBK apoptotic inducer (X89984) 901X-9 (2544629)

Cluster 1

Heat Map

Putting it All Together*

- Perform normalization
- Determine if experiment is a time series, a two condition or a multi-condition experiment
- Calculate level of differential expression and identify which genes are significantly (p<0.05 using a t-test) overexpressed or under expressed (a 2 fold change or more)
- Use clustering methods and heat maps to identify unusual patterns or groups that associate with a disease state or conditions
- Interpret the results in terms of existing biological or physiological knowledge
- Produce a report describing the results of the analysis

The Student's t-test*

- The Student's t-distribution was first introduced by W.S. Gossett in 1908 under the pen name Student
- Used to establish confidence limits (error bars) for the mean estimated from smaller sample sizes
- Used to test the statistical significance of a non-zero mean
- Used to test the statistical significance of the difference between means from two independent samples
- A p value or t-stat of <0.05 is significant

Control of the service of the s	000				GEO2R - GEO - I	NCBI		
Image: The set of the se		🖶 🗛 🕂	Nttp://www.ncbi.nlm	.nih.gov/geo/ge	o2r/		৫ ি ব	Google
CED CEDIC CEC OF CEDAR CEC OF CEDAR CEC A CEC OF CEC CEC CEC CEC CEC CEC CEC CEC CEC CE	കമ്പ് 🚻 🛚	lass Spectrouantitat	tion Biomarkers —bli	Portal SOLiD S	oftwaxy > Home	Tutorial:BasenTutorials	OpenHelix: Lee tutorials	>>
NCB1 × GE0 × GEO2R Login Use GEO2R to compare two or more groups of Samples in order to identify genes that are differentially expressed across experimental conditions. Results are presented as a table of genes ordered by significance. Full instructions Vation GEO accession Set Culck start • Specify a GEO Series accession and a Platform if prompted. • Click Top Signe to each group. Highlight Sample rows then click the group name to assign those Samples to the group. Highlight Sample rows then click the group name to assign those Samples to the group. Highlight Sample rows then click the group name to assign those Samples to the group. Highlight Sample rows then click the group name to assign those Samples to the group. Highlight Sample rows then click the group name to assign those Samples to the group. Highlight Sample rows then click the group name to assign those Samples to the group. Highlight Sample rows then click the group name to assign those Samples to the group. Highlight Sample rows then click the group name to assign those Samples to ach group. Highlight Sample rows then click the group name to assign those Samples to ach group. Highlight Sample rows then click the group name to assign those Samples to ach group. Highlight sample rows the data (title, source and characteristics) columns to help determine which Samples belong to which group. • Click Top 250' to perform the calculation with default settings. • Results are presented as a table of genes ordered by significance. The top 250 genes are presented and may be viewed as profile graphs. Alternatively, the complete results table may be saved. • You may change setting	S NCI	31				GE	O Publications FAQ	Gene Expression Omnibus
Becker	NCBI » GEO » GEO	D2R						Login
GEO2R Value distribution Options Profile graph R script • Cuick start • Specify a GEO Series accession and a Platform if prompted. • Click Define groups' and enter names for the groups of Samples you plan to compare, e.g., test and control. • Assign Samples to each group. Highlight Sample rows then click the group name to assign those Samples to the group. Use the Sample metadata (title, source and characteristics) columns to help determine which Samples belong to which group. • Click Top 250' to perform the calculation with default settings. • Results are presented as a table of genes ordered by significance. The top 250 genes are presented and may be viewed as profile graphs. Alternatively, the complete results table may be saved. • You may change settings in Options tab. How to use Top 250 Save all results	Use GEO2R to Results are p GEO accessi	o compare two or presented as a tabl	more groups of Sam le of genes ordered b Set	oles in order to y significance.	identify genes t Full instructio	hat are differentially ex ns You (ሰዕድ	pressed across experime	ental conditions.
 GEOR Value distribution Options Profile graph R script Quick start Specify a GEO Series accession and a Platform if prompted. Click 'Define groups' and enter names for the groups of Samples you plan to compare, e.g., test and control. Assign Samples to each group. Highlight Sample rows then click the group name to assign those Samples to the group. Use the Sample metadata (title, source and characteristics) columns to help determine which Samples belong to which group. Click 'Top 250' to perform the calculation with default settings. Results are presented as a table of genes ordered by significance. The top 250 genes are presented and may be viewed as profile graphs. Alternatively, the complete results table may be saved. You may change settings in Options tab. How to use Top 250' Save all results								
 • Quick start 9. Specify a GEO Series accession and a Platform if prompted. 9. Click 'Define groups' and enter names for the groups of Samples you plan to compare, e.g., test and control. 9. Assign Samples to each group. Highlight Sample rows then click the group name to assign those Samples to the group. Use the Sample metadata (title, source and characteristics) columns to help determine which Samples belong to which group. 9. Click 'Top 250' to perform the calculation with default settings. 9. Results are presented as a table of genes ordered by significance. The top 250 genes are presented and may be viewed as profile graphs. Alternatively, the complete results table may be saved. 9. You may change settings in Options tab. How to use Top 250' Save all results	GEO2R	Value distribution	Options Profile gra	ph R script				
	GEOR Value distribution Options Profile graph R script • Quick start • Specify a GEO Series accession and a Platform if prompted. • Click 'Define groups' and enter names for the groups of Samples you plan to compare, e.g., test and control. • Click 'Define groups' and enter names for the groups of Samples you plan to compare, e.g., test and control. • Specify a GEO Series accession and a Platform if prompted. • Click 'Define groups' and enter names for the groups of Samples you plan to compare, e.g., test and control. • Specify a GEO Series accession and a Platform if prompted. • Click 'Define groups' and enter names for the groups of Samples you plan to compare, e.g., test and control. • Specify a GEO Series accession and a Platform if prompted. • Click 'Define groups' and enter names for the groups of Samples you plan to compare, e.g., test and control. • Specify a GEO Series accession and a Platform if prompted. • Click 'Do 250' to perform the calculation with default settings. • Click 'Top 250' to perform the calculation with default settings. • You may change settings in Options tab. • You may change settings in Options tab. • Top 250' Save all results							

http://www.ncbi.nlm.nih.gov/geo/geo2r/

- Web-based GeneChip/Microarray analysis pipeline written in R
- Designed to handle microarray data deposited in the GEO (Gene Expression Omnibus) database
- Performs relatively simple analysis of microarray data
- Generates lots of tables and plots
- Supports many different microarray platforms
- User-friendly, with several tutorials
DAVID*

http://david.abcc.ncifcrf.gov/

DAVID - Output

DAVID-Annotation

- Takes "significant" gene lists (from microrarray expts or proteomic experiments) and allows users to plot heatmaps, generate graphs, identify possible pathways, common or shared functions, clusters of similar genes as well as shared gene ontologies (GO terms)
- Facilitates biological interpretation

How To Do Your Assignment

- Read the assignment instructions carefully
- Follow the instructions listed on the GEO2R website. If you are not clear on how to use the site, look at the YouTube video. Part of the assignment grade depends on you being able to follow instructions on your own
- The assignment has several tasks. Make sure to complete all tasks. Use graphs and tables to make your point or answer the questions
- Do not plagiarize text from the web or from papers when putting your answers together
- You can cut and paste tables and images from tasks you perform on webservers

How To Do Your Assignment

- The assignment should be assembled using your computer (cut, paste, format and edit the output or data so it is compact, meaningful and readable)
- No handwritten materials unless your computer/printer failed
- A good assignment should be 5-6 pages long and will take 4-5 hours to complete
- Hand-in hard copy of assignment on due date. Electronic versions are accepted only if you are on your death bed