Measuring Gene Expression Part 2

David Wishart Bioinformatics 301 david.wishart@ualberta.ca

Objectives

- Review of detailed principles of microarrays (methods, data collection)
- Understand differences between spotted arrays versus Affy gene chips (advantages/disadvantages)
- Steps to doing microarrays and possible sources of error

Measuring Gene Expression*

- Differential Display
- Serial Analysis of Gene Expression (SAGE)
- RNA-Seq
- RT-PCR (real-time PCR)
- Northern/Southern Blotting
- DNA Microarrays or Gene Chips

Microarrays

DNA Microarrays*

- Principle is to analyze gene (mRNA) or protein expression through large scale non-radioactive Northern (RNA) or Southern (DNA) hybridization analysis
- Essentially high throughput Northern Blotting method that uses Cy3 and Cy5 fluorescence for detection
- Allows expressional analysis of up to 20,000 genes simultaneously

Four Types of Microarrays*

- Photolithographically prepared short oligo (20-25 bp) arrays (1 colour)
- Spotted glass slide cDNA (500-1000 bp) arrays (2 colour)
- Spotted nylon cDNA (500-1000 bp) arrays (1 colour/radioactive)
- Spotted glass slide oligo (30-70 bp) arrays (1 or 2 colour)

Principles of 2 Colour Microarrays*

Microarray Definition of Probe and Target

- There are two acceptable and completely opposite definitions. We will use:
- Target = the DNA that is spotted on the array
- Probe = the DNA that is labeled with the fluorescent probe

2-Colour Microarray Principles*

Typical 2-Colour Data

Microarrays & Spot Colour*

Principles of 1 Colour Microarrays

Microarrays & Spot Colour*

Two Colour vs. One Colour

- Two-colour hybridization eliminates artifacts due to variation in:
 - quantity of DNA spotted
 - stringency of hybridization
 - local concentration of label
- However,
 - both samples *must* label with equivalent efficiency
 - Information is lost for genes not expressed in the reference or control sample

Two Colour vs. One Colour

- One-colour hybridization may have artifacts due to variation in:
 - quantity of DNA spotted
 - stringency of hybridization
 - local concentration of label
- However good quality control (QC) means,
 - fewer artifacts
 - less manipulation, lower cost
 - reduced loss of information (due to reference sample transcript content)

Specific Arrays of Interest

Home-made Spotted Oligo Arrays

 Made using glass slides, Operon oligos and robotic spotting equipment

- Applied Microarrays CodeLink Arrays
 - Made using specially treated slides, QC'd oligos and robotic spotting equipment
- Affymetrix Gene Chips
 - Made using photolithographically produced systems with multi-copy oligos

Array Images*

Oligo Microarray 2 colour

Applied Microarrays

1 colour

Array Images*

Affymetrix Gene Chip 1 colour

Home-made Spotted Arrays

Spotted Microarrays*

- Target spots are >100μm and are usually deposited on glass
- Targets can be:
 - oligos (usually >40mers)
 - PCR fragments from cDNA/EST or genomic templates (rarely done)
- Not reused; 2-colour hybridizations

Standard Spotted Array

Home-made Microarrays

Common Home-made Microarray Errors*

Irregular Spot

Comet Tail

Streaking

Hi Background Low Intensity A Good Array

Testing Reproducibility

- Breast tumor tissue biopsy
- mRNA prepared using standard methods
- Control sample made from pooled mRNA from several cell types
- 3 RNA samples prepared from 1 tissue source – arrayed onto two sets of homemade chips from different suppliers
- Conducted pairwise comparison of intensity correlations & no. of spots

Home-made Arrays

Home-made Arrays

Advantages to Home-made Systems*

- Cheapest method to produce arrays (\$100 to \$300/slide)
- Allows lab full control over design and printing of arrays (customizable)
- Allows quick adaptation to new technologies, new target sets
- Allows more control over analysis

Disadvantages to Home-made Systems*

- Quality and quality-control of oligo target set is highly variable
- Quality of spotting and spot geometry is highly variable
- Technology is very advanced, difficult and expensive to maintain (robotics)
- Reproducibility is poor

Applied Microarrays CodeLink Arrays

Applied Microarrays CodeLink Arrays

- Applied Microarrays synthesizes its 30-nucleotide oligos offline, tests them by mass spectrometry, deposits them on <u>specially coated</u> (polyacrylamide) array, and then assays them for quality control
- Uses a special Flex Chamber™—a disposable hybridization chamber already attached to the slide to improve hybridization consistency

Applied Microarrays CodeLink Oligo Chip

CodeLink Special Coating

- Most glass substrates are quite hydrophobic
- This hydrophobicity affects the local binding and surface chemistry of most glass-slide chips making most of the attached DNA oligo inaccessible
- Coating the slide with a hydrophilic polymer allows the cDNA to pair up with the substrate oligos much better

Applied Microarrays Array

Morphology Does Not Affect Dynamic Range CodeLink Bioarrays Can Achieve Linearity Across 3 Logs*

- The red line indicates the signal level for non-spiked target.
- Error bars represent one standard deviation for each mean (n=18) signal

*Data obtained from cRNA dilution series.

Testing Reproducibility

- Breast tumor tissue biopsy
- mRNA prepared using standard methods
- 3 RNA samples prepared from 1 tissue source – arrayed onto 3 different sets of CodeLink chips
- Conducted pairwise comparison of intensity correlations, intensity ratio correlations & number of "passed" spots

Intensity, Pairwise Comparisons

Applied Microarrays Slides

1) R=1	95%Cl=(1	-1) N=8258
2) R=0.9	99 95%CI=(0	.99-1) N=8332
3) R=0.9	99 95%CI=(0	.99-0.99) N=8290

Ratio, Pairwise Comparisons

Applied Microarrays Slides

R=0.98 95%CI=(0.98-0.98) N=7694
 R=0.97 95%CI=(0.97-0.98) N=7873
 R=0.97 95%CI=(0.97-0.97) N=7694

General Comparison

Appl Micro Inter

	1) R=1	95%Cl=(1-1)	N=8258	a and a second s
ol Micro Intensity	2) R=0.99	95%Cl=(0.99-1)	N=8332	
	3) R=0.99	95%Cl=(0.99-0.99)	N=8290	2
		-		
	1) R=0.98	95%Cl=(0.98-0.98)	N=7694	Anopher Tabladish Tab ben Gillen 12 In Para and California (California) In Para and California (California) In Para and California) In Para and California
Appl Micro Ratio	2) R=0.97	95%Cl=(0.97-0.98)	N=7873	Cet un
	3) R=0.97	95%Cl=(0.97-0.97)	N=7694	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		-		
	1) R=0.7	95%Cl=(0.68-0.72)	N=2027	Veccore das Ya ladota Per de Salar 3
Vancouver	2) R=0.65	95%Cl=(0.62-0.67)	N=2818	
	3) R=0.61	95%Cl=(0.59-0.64)	N=2001	1 definition of the second sec
			NL 4000	· 아파아 가지 않는 것이 가지 않는 것이 가지 않는 것이 있다. 1 - · 아파 가지 않는 것이 같은 것이 있는 것이 같은 것이 있다. 1 - · 아파 가지 않는 것이 같은 것이 있는 것이 같은 것이 있
	1) R=0.66	95%CI=(0.62-0.69)	N=1028	
Calgary I	2) R=0.86	95%CI=(0.85-0.87)	N=1925	Transformed and the second
5 1	3) R=0.64	95%Cl=(0.61-0.68)	N=1040	2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				Copyra Fuel 1055 The Taplace For two Select 1 For the VERCHART FLAG. And 2
	1) R=0.49	95%CI=(0.44-0.54)	N=942	
Calgary II	2) R=0.81	95%CI=(0.8-0.83)	N=1700	a promovo (hr)
	3 P=0.57	05% CI=(0 52_0 61)	N=073	

Comparative Accuracy

	RT-PCR	Spotted Array	CodeLink		
GENES	Expression Pattern TaqMan	Expression Pattern Operon	Expression Pattern Applied Micr		
hENT1	+	-	+		
hENT2	+	-	+		
hCNT1	-	-	-		
hCNT2	-	+	-		
dck	+	-	+		
ER	+	-	+		

CodeLink Advantages*

- Exceptional reproducibility because of:
 - careful target design
 - QC of oligo preparations and spotting
 - high proportion of oligo binding to cDNA substrate due to hydrophilic coating
 - well controlled/uniform hybridization
- Allows users to continue using same scanners/software as in spotted arrays

CodeLink Disadvantages*

- Lack of flexibility or customizability (users depend on Applied Microarrays to provide & design chips)
- Dependent on proprietary kits and reagents
- More expensive than spotted arrays (\$700/chip)

Cost per Sample in Triplicate

- Applied Microarrays Slides (single channel)
 <u>\$2000</u>
- Vancouver Spotted Arrays (two colour)
 \$800
- Calgary Spotted Arrays (two colour)
 \$1100

Affymetrix Gene Chips*

- Chips are 1.7 cm²
- 400,000 oligo set pairs
- Probe "spots" are 20μ x
 20μ
- Each target is 25 bases long
- 11-20 "match" targets and 11-20 "mismatch" targets per gene

Affymetrix Gene Chip*

Affy Chip*

Affy Chip*

- 11-20 targets for each gene/EST
- Each target is 25 bases long
- 1 has exact match, the other is mismatched in the middle base
- Match (M) and mismatch (MM) pairs are placed next to each other
- Expression levels calculated using intensity difference between M & MM for all target pairs

Affymetrix Hybridization*

Affy Chips

Affy Chips

Kuo et al. (2002) Bioinformatics

Comparison of Affymetrix and Spotted cDNA Arrays

161 620 matched pairs of measurements from 56 cell lines

Affymetrix GeneChip Advantages*

- High precision because of:
 - careful target design
 - up to 20 targets per gene
 - up to 20 mismatch targets
- Very precise measurements
- Very high density (500,000 elements/ array)

Affymetrix GeneChips Disadvantages*

- Inflexible: each array requires custom photolithographic masks
- More expensive than spotted arrays (\$600-\$800 per chip)
- Proprietary technology
 - not all algorithms, information public
 - only one manufacturer of readers, etc.

General Comments*

- Spotted arrays are still wildly popular and widely used – a great learning tool for expression analysis
- Problems have been resolved but spotted arrays are generally less reliable than commercial systems
- Commercial systems (CodeLink and Affy) offer much greater reliability but are expensive & inflexible

Microarray Production*

- Target design and selection
- Printing
- RNA extraction
- Labeling
- Hybridization and washing
- Scanning
- Data analysis

Slide making

Experimental

Target Design & Selection*

- Synthetic oligos 25-70 bases in length
- Choose sequences complementary to mRNA of interest
- Random base distribution and average GC content for organism
- Avoid long A+T or G+C rich regions
- Minimize internal secondary structure (hairpins or other loops)
- 1 M salt + 65 °C thermostability

Target Design & Selection*

- Design and select oligo sequences that are less than 75% identical to existing genes elsewhere in the genome (i.e. do a BLAST search)
- Sequences with >75% sequence identity to other sequences will cross-hybridize – leading to confounding results

Osprey - Software for Microarray Target Design

http://www.visualgenomics.ca/index.php?option=com_wrapper&Itemid=8

Cross-hybridization

Analysis of a cross-hybridization within the CYP450 superfamily

Xu et al. (2001) Gene

Microarray Printing

- Targets are deposited by robots using:
 - piezo-electric jets
 - microcapillaries
 - split or solid pins
- Coated glass is the most common substrate
 - aminosilane, poly-lysine, etc. give non-covalent linkages
 - covalent linkage is possible with modified oligos + aldehyde (etc.) coatings

RNA Extraction

- RNA is extremely unstable
- Probably the most problematic step in all microarray analysis
- RNA is extracted as "total RNA"
 - only 1-2% is mRNA
 - remainder is rRNA, tRNA, etc.
- RNA extracted from tissue is often very heterogeneous (many cells and cell types) – watch selectivity

Laser Capture Microdissection

 Cells of interest are visually selected and exposed to an **IR** laser, which adheres them to a transfer film

arcturus.com

RNA Labeling*

- Common source of systematic error (freshness, contaminants)
- Direct labeling
 - fluorescent nucleotides are incorporated during reverse transcription ("first strand")
- Indirect labeling
 - reactive nucleotides (aminoallyl-dUTP) are incorporated during RT; first strand product is mixed with reactive fluorescent dyes that bind to amino group

Direct Labeling*

Cy5

Cy3-ATP

Indirect Labeling

Hybridization

- Stringency of hybridization is affected by ions, detergents, formamide, temperature, time...
- Hybridization may be an important source of systematic error
- Automated hybridization systems exist; value is debatable

Lee et al. (2000) PNAS

How Many Replicates?

Table 5. Misclassification percentages for different combinations of replicates

Classification	Combination of Replicates						
Outcome	(1)	(2)	(3)	(1, 2)	(1, 3)	(2, 3)	(1, 2, 3)
False positive, %	8.3	1.4	9.0	1.0	2.1	0.7	0.7
False negative, %	0.3	0.0	0.0	0.3	0.3	0.0	0.0
Misclassified, %	8.7	1.4	9.0	1.4	2.4	0.7	0.7
	۲ Singletons		⋎ Duplicates		3X		

 Substantial error when only one array analyzed, standard is to use 3 replicates

What Types of Replicates?*

Biological replicates

Technical replicates

Biological replication is most important because it includes all of the potential sources for error

Microarray Production

- Target design and selection
- Printing
- RNA extraction
- Labeling
- Hybridization and washing
- Scanning
- Data analysis