Genome Annotation

Bioinformatics 301 David Wishart *david.wishart@ualberta.ca* Notes at: http://wishartlab.com

Objectives*

- To demonstrate the growing importance of gene and genome annotation in biology and the role bioinformatics plays
- To make students aware of new trends in gene and genome annotation (i.e. "deep" annotation)
- To make students aware of the methods, algorithms and tools used for gene and genome annotation

Genome Sequence

>P12345 Yeast chromosome1 GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA **TTACAGATTACAGATTACAGATTACAGATTACAGAT** TACAGATTAGAGATTACAGATTACAGATTACAGATT ACAGATTACAGATTACAGATTACAGATTACAGATTA CAGATTACAGATTACAGATTACAGATTACAGATTAC AGATTACAGATTACAGATTACAGATTACAGATTACA GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA **TTACAGATTACAGATTACAGATTACAGATTACAGAT**

Predict Genes

This server can accept sequences up to 1 million base pairs (1 Mbp) in length. If you h server or if you have a large number of sequences to process, request a local copy of t at the bottom of this page) or use the <u>GENSCAN email server</u> . If your browser (<i>e.g.</i> , upload or multipart forms, use the <u>older version</u> . Organism: <u>Vertebrate</u> Suboptimal exon cutoff (optional): 1.00	the program (se	e instructio	
Sequence name (optional):			
Print options: Predicted peptides only			
Upload your DNA sequence file (one-letter code, upper or lower case, spaces/numbe	rs ignored):		
Or paste your DNA sequence here (one-letter code, upper or lower case, spaces/num	ibers ignored):		
Document: Done			

The Result...

>P12346 Sequence 1 ATGTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA TTACAGATTACAGATTACAGATTACAGAT

>P12347 Sequence 2 ATGAGATTAGAGATTACAGATTACAGATTACAGATT ACAGATTACAGATTACAGATTACAGATTACAGATTA CAGATTACAGATTACAGATTACAGATTACAGATT

>P12348 Sequence 3 ATGTTACAGATTACAGATTACAGATTACA GATTACAGATTACAGATTACAGATTACA...

Is This Annotated?

>P12346 Sequence 1 ATGTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA TTACAGATTACAGATTACAGATTACAGAT

>P12347 Sequence 2 ATGAGATTAGAGATTACAGATTACAGATTACAGATT ACAGATTACAGATTACAGATTACAGATTACAGATTA CAGATTACAGATTACAGATTACAGATTACAGATT

>P12348 Sequence 3 ATGTTACAGATTACAGATTACAGATTACA GATTACAGATTACAGATTACAGATTACA...

How About This?

>P12346 Sequence 1 MEKGQASRTDHNMCLKPGAAERTPESTSPASDAAGG IPQNLKGFYQALNNWLKDSQLKPPPSSGTREWAALK LPNTHIALD

>P12347 Sequence 2 MKPQRTLNASELVISLIVESINTHISHOUSEPLEAS EWILLITALLCEASE

>P12348 Sequence 3 MQWERTGHFDALKPQWERTYHEREISANTHERS...

Gene Annotation*

 Annotation – to identify and describe all the physico-chemical, functional and structural properties of a gene including its DNA sequence, protein sequence, sequence corrections, name(s), position, function(s), abundance, location, mass, pl, absorptivity, solubility, active sites, binding sites, reactions, substrates, homologues, 2° structure, 3D structure, domains, pathways, interacting partners

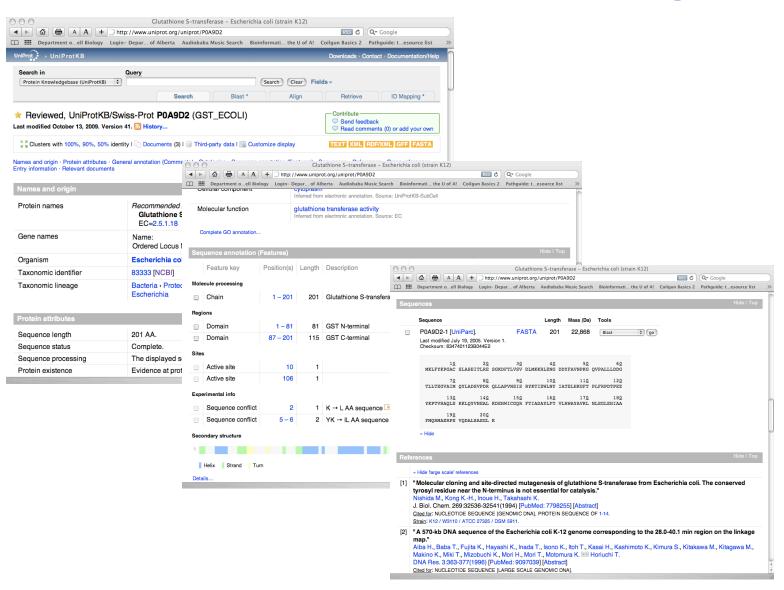
Gene Annotation

Protein/Gene vs. Proteome/ Genome Annotation

- Gene/Protein annotation is concerned with one or a small number (<50) genes or proteins from one or several types of organisms
- Genome/Proteome annotation is concerned with entire proteomes (>2000 proteins) from a specific organism (or for all organisms) need for speed

Different Levels of Annotation*

- Sparse typical of archival databanks like GenBank, usually just includes name, depositor, accession number, dates, ID #
- Moderate typical of many curated protein sequence databanks (UniProt or TrEMBL)
- Detailed not typical (occasionally found in organism-specific databases)


Different Levels of Database Annotation*

- GenBank (large # of sequences, minimal annotation)
- TrEMBL (large # of sequences, slightly better [computer] annotation)
- UniProtKB (small # of sequences, even better [hand] annotation)
- Organsim-specific DB (very small # of sequences, best annotation)

GenBank Annotation (GST)

000	Protein – glutathionine S-transferase [Escherichia coli O157		
	A A + Shttp://www.ncbi.nlm.nih.gov:80/protein/261258347?ordinalpos=1&itool=		Q• Google
Depart	nent oell Biology Login- Depar of Alberta Audiobaba Music Search Bioinformati the U of A	A! Collgun Basics 2	Pathguide: tesource list
		Journals Book	My NCBI 2 [Sign In] [Register]
Search Protein	;) for Go Clear		
Limits Prev	riew/Index History Clipboard Details		
Format: GenP	ept <u>FASTA</u> <u>Graphics</u> <u>More Formats</u> ▼	Download ▼ Save	<u>e</u> ▼ <u>Links</u> ▼
☆ Try the Gr	aphics report for a more informative view of the biological features.		
NCBI Reference	Sequence: ZP_05950880.1	Change Region S	Shown 💌
glutathior	ine S-transferase [Escherichia coli O157:H7 str. FRIK966]	Customize View	
-			
Comment Fea	atures Sequence	Sequence Analy	ysis Tools 🔺
LOCUS DEFINITION	ZP_05950880 201 aa linear BCT 12-OCT-2009 glutathionine S-transferase [Escherichia coli 0157:H7 str. FRIK966].		nce imilarity between this her sequences using
ACCESSION VERSION	ZP_05950880 ZP_05950880.1 GI:261258347	BLAST.	
DBLINK DBSOURCE KEYWORDS	Project: <u>32275</u> REFSEQ: accession <u>NZ_ACXN01000227.1</u>		domains detected in this using CD-search.
SOURCE ORGANISM	Escherichia coli 0157:H7 str. FRIK966 Escherichia coli 0157:H7 str. FRIK966		
	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Escherichia.	Identical Proteins	for ZP_05950880.1
REFERENCE	1 (residues 1 to 201)	glutathionine S-tr	ransferase [ZP_05942200]
AUTHORS	Dowd,S.E., Wolcott,R.D., Sun,Y., Gontcharova,V., Youn,E., Ricke,S.C., Callaway,T.R., Kasper,C., Muthaiyan,A. and Domingo,A.		ransferase[YP_003234529]
TITLE	Microarray analysis and draft genomes of two Escherichia coli 0157:H7 lineage II cattle isolates FRIK966 and FRIK2000	glutathionine S-tr	ransferase[YP_003229351]
	investigating lack of Shiga toxin expression		» See all
JOURNAL REFERENCE	Unpublished 2 (residues 1 to 201)	Recent Activity	
AUTHORS	Dowd,S.E., Wolcott,R.D., Sun,Y., Gontcharova,V., Youn,E., Ricke,S.C., Callaway,T.R., Kasper,C., Muthaiyan,A. and Domingo,A.		Turn Off Clear
TITLE JOURNAL	Direct Submission	glutathionin	e S-transferase
JOORNAL	Submitted (08-AUG-2009) Medical Biofilm Research Institute, Research and Testing Laboratory, 4321 Marsha Sharp Fwy, Lubbock, TX	[Escherichi	a coli O157:H7 str.
COMMENT	79407, USA WGS <u>REFSEQ</u> : This record is provided to represent a collection of whole genome shotgun sequences. The reference sequence was derived		e S-transferase a coli str. K-12 substr.
	from <u>ACXN01000227</u> . Annotation was added by the NCBI Prokaryotic Genomes Automatic	GSTZ1 glut	tathione transferase zeta

UniProtKB Annotation (GST)

The CCDB*

Nucleic Acids Research, 2004, Vol. 32, Database issue D293–D295 DOI: 10.1093/nar/gkh108

The CyberCell Database (CCDB): a comprehensive, self-updating, relational database to coordinate and facilitate *in silico* modeling of *Escherichia coli*

Shan Sundararaj<mark>,</mark> Anchi Guo, Bahram Habibi-Nazhad, Melania Rouani[®], Paul Stothard, Michael Ellison¹ and David S. Wishart

Faculty of Pharmacy and Pharmaceutical Sciences and ¹Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2N8, Canada

Received August 15, 2003; Accepted October 13, 2003

http://ccdb.wishartlab.com/CCDB/

CCDB Annotation (GST)

Institute for Biomolecular Design

-

Project Cubor ColITM

	Project C	<i>TyberCell™</i> Data	abase	: CCDB				
Home CCDB CC3D CC	CRD CCMD Sea	rch Extract BLAST Download 9 General_Function	Statistics Biosynt	Info hesis of cofacto	ors, prosthetic groups a	nd car	riers	
EDIT COLICARD		Specific_Function		ation of reduce hobic electroph		numbe	er of exogenous/Endogenous	
		Riley_Function	No Data					
COLICARD	GT_E	Molecular_Function	glutathionine S-transferase					
Last_Update	July 05, 2002	Gene_Ontology	Fu	Inction	Cell Process		Cell Componen	
Entry_ID	CC2351A.1	- 5.	# No Da	ta	# No Data		# No Data	-
Accession_Number	UA0002351	Pfam_Domain/Function	PF0004 PF0279	Centisome_	Position	36.	911 minutes	-
Name	Glutathione S	Homologues	None D	Metabolic_3	(mportance		n_Essential IR (multimodular ydgR: putative POT family peptide transport protein, 3rd mod	
Alternate_Names	1) Glutathione 2) Glutathione	Similarity	Belong	Preceding_Gene)		
 General_Function	Biosynthesis o	Cell_Location	Cytopla	Following_(Gene	pdx	Y (pyridoxal kinase 2/pyridoxine kinase, 2nd module)	
		Gene_Name	gst	Paralogues		No	Paralogues	
Document: Done Blattner_Number		Blattner_Number	b1635	Protein_Copy_Number		Unknown		
		Blattner_Ontology	2D_Gel_Image Biosynt		Click Here For GIF Image			
	Gene_Position	171240	# RNA_Cop	y_Number	-	Phase: 0.08 tionary Phase: 4.37		

Genbank_ID_(DNA)

SWISS_PROT_ID

Genbank_ID_(Protein)

SWISS_PROT_Accession

D38497 (g1787923)

12 S 🕹

×

AAC74707.1

GT_ECOLI P39100

ECOCYC EMBL

Document: Done

Document: Done

CCDB Annotation

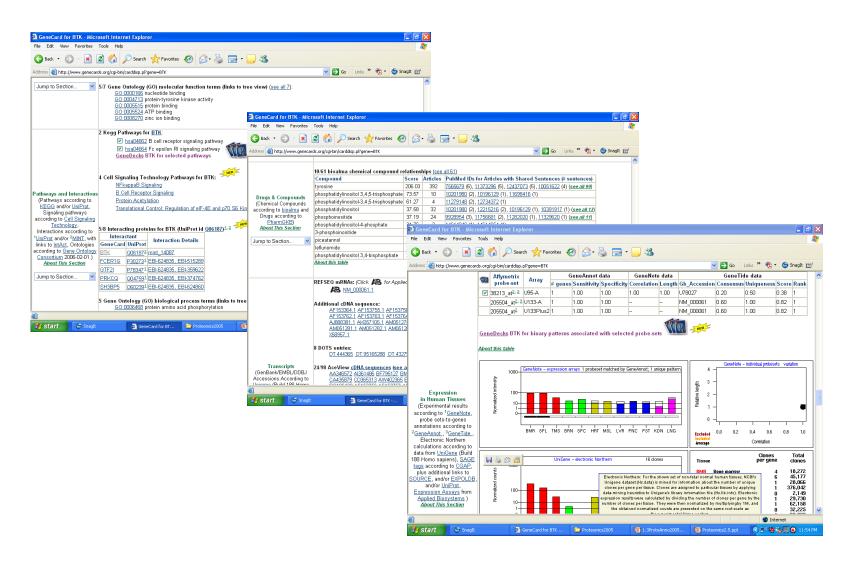
EC_Number	2.5.1.18		<u> </u>					
#_Amino_Acids_T	201 (Translated Protein)							
#_Amino_Acids_M	200 (Mature Protein)							
Calculated_Mw_(Daltons)_T	22868.4 (Translated Protein)							
Calculated_Mw_(Daltons)_M	22737.2 (Mature Protein)	_						
Theoretical_pI_T	5.85		ylated-DNAprotein-cysteine methyltr -R-[LIVMF].	ansferase active site.				
Theoretical_pI_M	5.86	 PS00462 Gam 	LIVMF]-P-C-H-R-[LIVMF]. PS00462 Gamma-glutamyltranspeptidase signature. F-[STA]-H-x-[ST]-[LIVMA]-x(4)-G-[SN]-x-V-[STA]-x-T-x-T-[LIVM]-[NE]-PA					
Observed_pI		3) PS01311 Proli	poprotein diacylglyceryl transferase sig	gnature.				
Sequence_¥erified	1) Arc. PROSITE_Motif bac 2) Nish mut	4) PS00197 2Fe-:	F-[LIVMF]-N-x-E-x(2)-G. 2S ferredoxins, iron-sulfur binding regi A]-{C}-C-[GAST]-{CPDEKRHFYW}-C. 					
	-325 >GT_E	5) PS01039 Bact ature. G-[FYIL]-[DE]-		ССЕЕЕЕСССССЕЕЕЕСНИНИНИНИНИНСССССССССССНИНИНИНИ				
	MKLFY TLLTF YKPTV Other_Sites FMQRM	1) Active Site (10 2) Active Site (10		FTIADAYLFTVLRWAYAVKLNLEGLEHIAAFMQRMAERPEVQDALSAEGL ССНИНИНИНИНИНИНИСССССССССНИНИНИНИНИНИНИ				
Protein_Sequence	<pre>>GT_E #_Transmembrane_Regions</pre>	No	PDB_Accession	140F				
1	KLFYP LLTEC PTVRA RMAEF Cys/Met_Translated	1.00 %Cys 2.49 %Met 3.49 %Cys+%Me	3D_¥iew	JAVA 3D View (PDB)				
Cocument: Dor	ne	1.00 %Cys	Resolution	2.1 Angstroms				
	Cys/Met_Mature	2.00 %Met 3.00 %Cys+%Me	Structure_Class/Fold_Class	All Alpha				
		MKLFYKPGACSLA	Quaternary_Structure	homodimeric A ₂ Complex of gst				
		QVPALLLDDGTLL	Interacting_Partners	1) gst				
	I → Document: Do	one	Cofactor	None				
			Metal_Ion	None				
			Kcat_¥alue_[1/min]	Not available				
			Specific_Activity_uM/min/mg	Not available				
				×				
			Socument: Dor	ne 📑 💥 🏜 🌚 🖬 🎸				

CCDB Contents*

- Functional info (predicted or known)
- Sequence information (sites, modifications, pl, MW, cleavage)
- Location information (in chromosome & cell)
- Interacting partners (known & predicted)
- Structure (2°, 3°, 4°, predicted)
- Enzymatic rate and binding constants
- Abundance, copy number, concentration
- Links to other sites & viewing tools
- Integrated version of all major Db's
- 70+ fields for each entry

GeneCards Content

- Aliases
- Databases
- Disorders
- Domains
- Drugs/Cmpds
- Expression
- Function
- Location


- Orthologs/Paralogs
- Pathways and Interactions
- References
- Proteins/MAbs
- SNPs
- Transcripts
- Gene Maps

http://www.genecards.org/index.shtml

GeneCards Annotation

🗿 GeneCard for BTK - Mic	rosoft Internet Explorer						
File Edit View Favorites	Tools Help				<i></i>		
🚱 Back 🔹 🐑 🐁 😫	🗟 🏠 🔎 Search 🚽	🎖 Favorites 🤣 🍰 🚺	🗟 • 🧾 🚳				
Address 🔕 http://www.geneca	rds.org/cgi-bin/carddisp.pl?gene	=ВТК		💌 🛃 Go 🛛 Links 🎽 📆 🔹	SnagIt 🔠		
	otein-coding BTK 1100410	Symbol approved by the HU	naglobulinemia tyro: <u>30 Gene Nomenclature Comr</u> ious symbols: AGMX1, IMD1 ion	nittee (HGNC) database			
	Aliases	Descriptions	GeneCard for BTK - Mice	rosoft Internet Explorer			
	AGMX1 2. 3. 5. 6	Agammaglobulinaemia tyrosine ki	File Edit View Favorites	Tools Help		All and a second se	
Aliases and		3 cell progenitor kinase ³ 3ruton aqammaqlobulinemia tyros	🕝 Back 🔹 🐑 🕤 📘	💈 🏠 🔎 Search havorites 🔞	🛛 🖉 - 🌺 🔁 - 🗖	- 28	
Descriptions (According to ¹ HGNC,		oruton agammagiopulinemia tyro: Bruton's tyrosine kinase ³		ds.org/cgi-bin/carddisp.pl?gene=BTK		🗸 🚽 🏹 Go Links » 📆 - 🌀 Snagīt 📑	
² Entrez Gene, ³ UniProt/Swiss-Prot, ⁴ UniProt/TrEMBL, ⁵ GDB, ⁶ OMIM, and/or ⁷ GeneLoc) About This Section	EC 2.7.1.112 ³ IMD1 ^{2.5.8} MGC126261 ²	Fyrosine-protein kinase BTK ³	Entrez Gene (NCB) pullo 35) and/or miRBase	GeneLoc location for GC0XM100410: Start: 100,410,580 bp from pter End: 100,447,327 bp from pter	(about GC identifiers)		
	PSCTK1 1.2.5			Size: 36,747 bases			
Jump to Section 🗸	XLA 1, 2, 6, 6		Jump to Section 💌	Orientation: minus strand	GeneCard for BTK - Mic File Edit View Favorites		
	Search outside databases	s for aliases		RefSeq genomic assemblies:			
	Previous GC identifers: G Chromosome: X	COXM095896 GC0XM097575 GC		NC_000023.8 NT_011651.15 N	🕝 Back 🝷 🕥 🕤 💌	📓 🟠 🔎 Search 🤺 Favorites 🛛 🔗 🕞 - 🍑 🚍 - 📙 🦓	
		band: Xq21.33-q22 Ensemblic		Genomic View.	Address 🕘 http://www.geneca	rds.org/cgl-bin/carddisp.pl?gene=BTK	🔽 🔁 Go Links 🍟 🧙 🔻 🌀 SnagIt 🖃
	· · · · · · · · · · · · · · · · · · ·	bands according to Ensembl, k		UCSC Golden Path with GeneC UniProt/Swiss-Prot: BTK HUMAN, Q0		Antibodies for BTK: Cell Signaling Technology Antibodies and Assays (Btk).	<u>^</u>
Genomic Location (According to <u>GeneLoc</u> and/or <u>HORE</u> , and/or Sector 3 3 3 4 3 4 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1	Chr X 또 편 2 기타 한 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	T P THE	Proteins (According to ¹ <u>UniProt</u> , and/or <u>Fasembl</u> , Phosphorylation sites according to ² <u>Phosphorita</u> , RefSe according to <u>NCE</u>],	Size: 658 amino acids; 75150 D Cofactor: Binds 12 runc ion per s Submit: Binds GTF21 through 1 Subcellular location: Cytoplat Subcellular location: Cytoplat Subcellular location: Autophosphorylated on Tyr-22 Autophosphorylated on Tyr-22 docking als for a SH2 contain View phosphorylation sites usin REFSEO proteins: NP_00052.1 ENSPE000030176 ENSPE000 Gene Ontology (GO) cellular com CO005212 through Condefault and CO005212 through Condefault and CO005212 through	Protein Domains/ Families (According to InterPro, Protolekt, UniProt, and/or BLOCKS) About Ibis Section	Antibodies from Abcam (ETLC), each with their Abpromise ⁵ M. 5/8 InterPro domains families (see all 9): EPRODI245 Tyr_pkinase EPRODI245 Tyr_pkinase EPRODI245 Tyr_pkinase EPRODI245 Proj_kinase Graphical Yiew of Domain Structure for UniProt Entry 005187. ProtoNet protein and cluster: 005187. 5 Blocks protein familities: 5 Bl	
						Function: Plays a crucial role in B-cell ontogeny. Transiently phosphorylates GTF2I o residues in response to B cell receptor crosslinking.	· ·
					E		Internet
					🛃 start 🛛 😒 Snagit	GeneCard for BT Proteomics2005 01 1.3ProteAnno200 Proteomics2005	oteomics2.5.ppt 🍳 🔊 🧐 🦓 🐪 🗍 🔎 🕘 11:46 PM

GeneCards Annotation

Ultimate Goal...

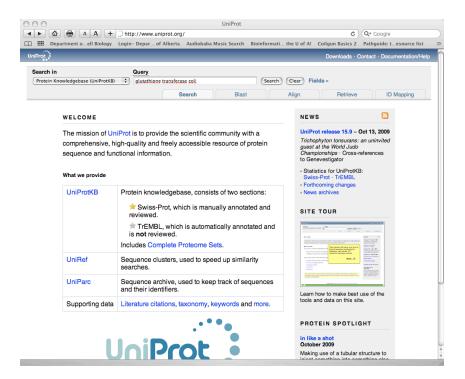
 To achieve the same level of protein/ proteome annotation as found in CCDB or GeneCards for all genes/proteins --<u>automatically</u>

How?

Annotation Methods*

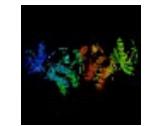
- Annotation by homology (BLAST)
 requires a large, well annotated database of protein sequences
- Annotation by sequence composition
 - simple statistical/mathematical methods
- Annotation by sequence features, profiles or motifs
 - requires sophisticated sequence analysis tools

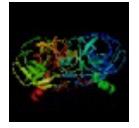
Annotation by Homology*

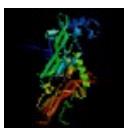

- Statistically significant sequence matches identified by BLAST searches against GenBank (nr), UniProt, DDBJ, PDB, InterPro, KEGG, Brenda, STRING
- Properties or annotation inferred by name, keywords, features, comments

Databases Are Key

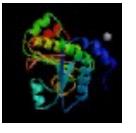
Sequence Databases*

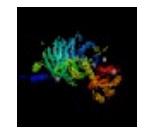

GenBank

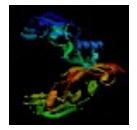

- www.ncbi.nlm.nih.gov/
- UniProt/trEMBL
 - http://www.uniprot.org/
- DDBJ
 - http://www.ddbj.nig.ac.jp

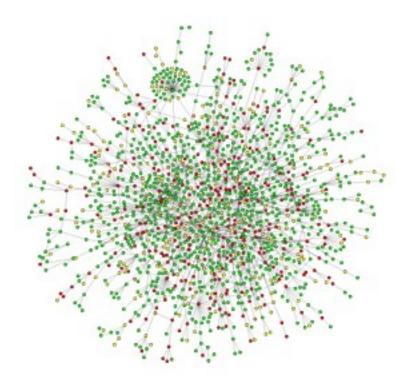


Structure Databases*


- RCSB-PDB
 - http://www.rcsb.org/pdb/
- PDBe
 - http://www.ebi.ac.uk/pdbe/
- CATH
 - http://www.cathdb.info/
- SCOP
 - http://scop.mrc-Imb.cam.ac.uk/scop/







Interaction Databases*

STRING

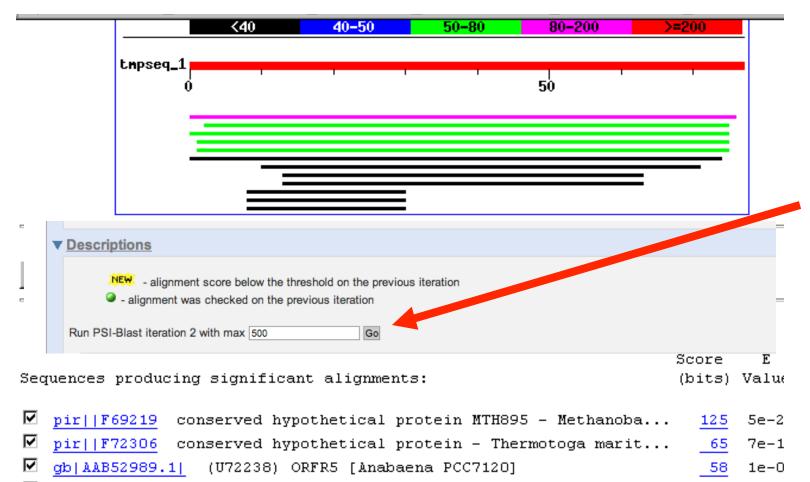
- http://string.embl.de/
- DIP
 - http://dip.doe-mbi.ucla.edu/
- PIM
 - http://www.ebi.ac.uk/intact/ main.xhtml
- MINT
 - http://mint.bio.uniroma2.it/ mint/Welcome.do

Bibliographic Databases

- PubMed Medline
 - http://www.ncbi.nlm.nih.gov/ PubMed/
- Google Scholar
 - http://scholar.google.ca/
- Your Local eLibrary
 - www.XXXX.ca
- Current Contents
 - http:// science.thomsonreuters.com/

Annotation by Homology An Example

- 76 residue protein from *Methanobacter* thermoautotrophicum (newly sequenced)
- What does it do?
- MMKIQIYGTGCANCQMLEKNAREAVKELGIDAE FEKIKEMDQILEAGLTALPGLAVDGELKIMGRV ASKEEIKKILS


PSI BLAST

000	Protein BLAST: search protein databases using a protein query
• • 🙆 🖶 /	A A + Shttp://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGR & Q* Google
Department o.	ell Biology Login- Depar of Alberta Audiobaba Music Search Bioinformati the U of A! Coilgun Basics 2
BLAST Home Recent	Basic Local Alignment Search Tool My NCBI R Results Saved Strategies Help Sign In [Register]
NCBI/ BLAST/ blastp su	uite
blastn blastp blastx	
Enter Query Se	BLASTP programs search protein databases using a protein query. <u>more</u> Bookmark QUENCE
Enter accession nu	mber, gi, or FASTA sequence 🥥 <u>Clear</u> Query subrange 😡
	COMLEKNAREAVKELGIDAEFEKIKEMDQILEAGLTALPGLAVDGELKIMGRVA
SKEEIKKILS	
	То
Or, upload file	Choose File no file selected
Job Title	
	Enter a descriptive title for your BLAST search 😣
🗏 Align two or mor	re sequences 😡
Choose Search	Set
Database	Non-redundant protein sequences (nr)
Organism	
Optional	Enter organism name or id-completions will be suggested Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.
Exclude	□ Models (XM/XP)
Optional	
Entrez Query Optional	Enter an Entrez query to limit search 🛞
Program Select	tion
Algorithm	O blastp (protein-protein BLAST)
	PSI-BLAST (Position-Specific Iterated BLAST)
	O PHI-BLAST (Pattern Hit Initiated BLAST) Choose a BLAST algorithm
DIACT	
BLAST	Search database Non-redundant protein sequences (nr) using PSI-BLAST (Position-Specific Iterated BLAST) Show results in a new window

PSI-BLAST – position specific iterative BLAST

- Derives a position-specific scoring matrix (PSSM) from the multiple sequence alignment of sequences detected above a given score threshold using protein BLAST
- This PSSM is used to further search the database for new matches, and is updated for subsequent iterations with these newly detected sequences
- PSI-BLAST provides a means of detecting distant relationships between proteins

PSI-BLAST

- 🗹 pir||H69530 conserved hypothetical protein AF2248 Archaeogl... _53 3e-0

PSI-BLAST*

Run PSI-Blast iteration 2		
end:		
- means that the alignment score was below the threshold on the previous	iterat	ion
• means that the alignment was checked on the previous iteration		
Sequences with E-value BETTER than threshold		
	Score	E
lences producing significant alignments:	(bits)	Value
Image: pir F69219 conserved hypothetical protein MTH895 - Methanobacte	<u>110</u>	2e-24
Image: Second Science and S	107	2e-23
Image: SpiQ58001 Y581 METJA HYPOTHETICAL PROTEIN MJ0581 >gi 2128389 pir	103	2e-22
Image: Pir F72306 conserved hypothetical protein - Thermotoga maritima	99	4e-21

- Image: Pir||H69530 conserved hypothetical protein AF2248 Archaeoglobu... <u>98</u> 1e-20 Image: <u>sp|P42035|THIO METTM</u> PROBABLE THIOREDOXIN (GLUTAREDOXIN-LIKE PRO... <u>42</u> 9e-04
 - Sp|026898|THIO METTH PROBABLE THIOREDOXIN (GLUTAREDOXIN-LIKE PRO... 41 0.001

Run PSI-Blast iteration 2

PSI-BLAST*

			Score	E
que	ence	es producing significant alignments:	(bits)	Value
_	_			
_		<pre>pir S54843 glutaredoxin-like protein - Pyrococcus furiosus >gi </pre>	99	3e-21
2		pir H71239 probable glutaredoxin-like protein - Pyrococcus hori	99	4e-21
3	$\mathbf{\nabla}$	pir F69219 conserved hypothetical protein MTH895 - Methanobacte	98	1e-20
9		gb AAB52989.1 (U72238) ORFR5 [Anabaena PCC7120]	96	5e-20
9	$\mathbf{\nabla}$	pir F75204 glutaredoxin-like protein PAB2245 - Pyrococcus abyss	96	5e-20
9	$\mathbf{\nabla}$	pir G72322 glutaredoxin-related protein - Thermotoga maritima (89	3e-18
9	$\mathbf{\nabla}$	<pre>sp Q58001 Y581 METJA HYPOTHETICAL PROTEIN MJ0581 >gi 2128389 pir</pre>	89	6e-18
9	\mathbf{V}	pir F72306 conserved hypothetical protein - Thermotoga maritima	88	9e-18
9	$\mathbf{\nabla}$	pir H69530 conserved hypothetical protein AF2248 - Archaeoglobu	87	2e-17
9	$\mathbf{\nabla}$	sp P42035 THIO METTM PROBABLE THIOREDOXIN (GLUTAREDOXIN-LIKE PRO	87	2e-17
9	$\mathbf{\nabla}$	pir A72669 probable glutaredoxin-like protein APE0775 - Aeropyr	86	4e-17
9	$\mathbf{\nabla}$	sp 026898 THIO METTH PROBABLE THIOREDOXIN (GLUTAREDOXIN-LIKE PRO	86	5e-17
9	\mathbf{V}	<pre>sp 028137 THIO ARCFU PROBABLE THIOREDOXIN >gi 7450264 pir A6951</pre>	85	6e-17
9	$\mathbf{\nabla}$	<pre>sp Q57755 THIO METJA THIOREDOXIN >gi 2129305 pir D64338 thiored</pre>	78	1e-14
9	$\mathbf{\nabla}$	sp P22904 YME3 THIFE HYPOTHETICAL 9.0 KD PROTEIN IN MOBE 3'REGIO	73	3e-13
<mark>4</mark>	•	<pre>pir E70340 glutaredoxin-like protein - Aquifex aeolicus >gi 298</pre>	45	1e-04

Run PSI-Blast iteration 6

Conclusions

- Protein is a thioredoxin or glutaredoxin (function, family)
- Protein has thioredoxin fold (2° and 3D structure)
- Active site is from residues 11-14 (active site location)
- Protein is soluble, cytoplasmic (cellular location)

Annotation Methods

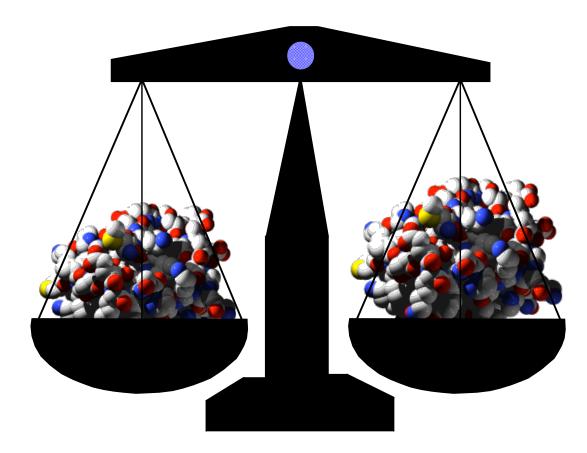
- Annotation by homology (BLAST)

 requires a large, well annotated database of protein sequences
- Annotation by sequence composition

 simple statistical/mathematical methods
- Annotation by sequence features, profiles or motifs
 - requires sophisticated sequence analysis tools

Annotation by Composition*

- Molecular Weight
- Isoelectric Point
- UV Absorptivity
- Hydrophobicity



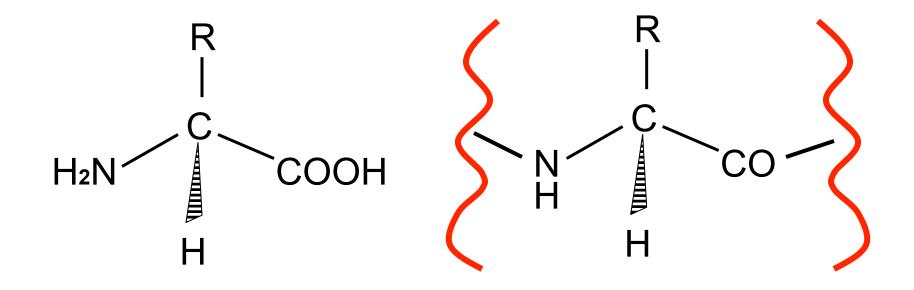
Where To Go

000	ExPASy: SIB Bioinformatics Resource Portal – Proteomics Tools						
ExPASy: SIB Bioinformatics Reso	+						
www.expasy.ch/tools/#proteon	ne 🏠 🧟 🕻 🖸 😭 🔹 🔍 🖈 🖾 🖬						
population genetics	Protein identification and characterization						
transcriptomics	Identification and characterization with peptide mass fingerprinting data						
biophysics	 FindMod 🌇 - Predict potential protein post-translational modifications and potential single amino acid 						
imaging	substitutions in peptides. Experimentally measured peptide masses are compared with the theoretical peptides calculated from a specified Swiss-Prot entry or from a user-entered sequence, and mass						
IT infrastructure	differences are used to better characterize the protein of interest.						
drug design	 FindPept Section - Identify peptides that result from unspecific cleavage of proteins from their experimental masses, taking into account artefactual chemical modifications, post-translational modifications (PTM) 						
Resources AZ	and protease autolytic cleavage						
Links/Documentation	 Mascot - Peptide mass fingerprint from Matrix Science Ltd., London PepMAPPER - Peptide mass fingerprinting tool from UMIST, UK 						
	ProFound - Search known protein sequences with peptide mass information from Rockefeller and NY						
	Universities [or from Genomic Solutions] ProteinProspector - UCSF tools for peptide masses data (MS-Fit, MS-Pattern, MS-Digest, etc.) 						
	Identification and characterization with MS/MS data						
	QuickMod - Open modification spectral library search tool for identification of MS/MS data						
	 Phenyx - Protein and peptide identification/characterization from MS/MS data from GeneBio, Switzerland 						
	 Mascot - Sequence query and MS/MS ion search from Matrix Science Ltd., London OMSSA - MS/MS peptide spectra identification by searching libraries of known protein sequences PepFrag - Search known protein sequences with peptide fragment mass information from Rockefeller and NY Universities 						
	 ProteinProspector - UCSF tools for fragment-ion masses data (MS-Tag, MS-Seq, MS-Product, etc.) 						
	Identification with isoelectric point, molecular weight and/or amino acid composition						
	 AACompIdent a - Identify a protein by its amino acid composition AACompSim a - Compare the amino acid composition of a UniProtKB/Swiss-Prot entry with all other entries 						
	• Tagldent a ldentify proteins with isoelectric point (<i>pI</i>), molecular weight (<i>Mw</i>) and sequence tag, or generate a list of proteins close to a given <i>pI</i> and <i>Mw</i>						
	 Multildent Solution - Identify proteins with isoelectric point (<i>pl</i>), molecular weight (<i>Mw</i>), amino acid composition, sequence tag and peptide mass fingerprinting data Other prediction or characterization tools 						
	Other prediction or characterization tools						

http://www.expasy.ch/tools/#proteome

Molecular Weight

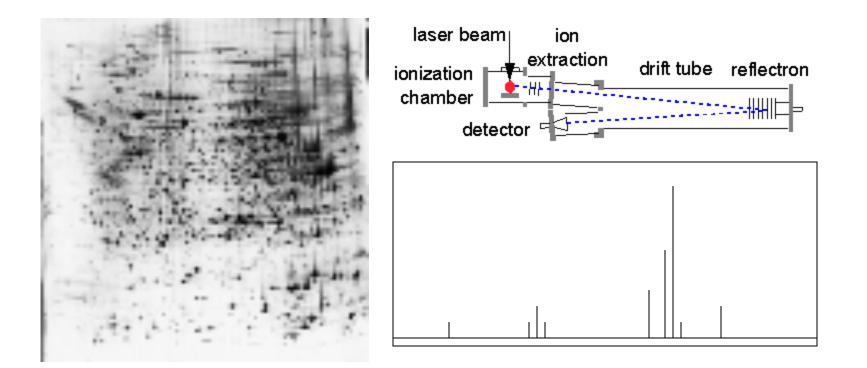
Molecular Weight*


- Useful for SDS PAGE and 2D gel analysis
- Useful for deciding on SEC matrix
- Useful for deciding on MWC for dialysis
- Essential in synthetic peptide analysis
- <u>Essential</u> in peptide sequencing (classical or mass-spectrometry based)
- <u>Essential</u> in proteomics and high throughput protein characterization

Molecular Weight*

- Crude MW calculation: MW = 110 X Numres
- Exact MW calculation: $MW = \Sigma nAA_i \times MW_i$
- Remember to add 1 water (18.01 amu) after adding all res.
- Corrections for CHO, PO4, Acetyl, CONH2

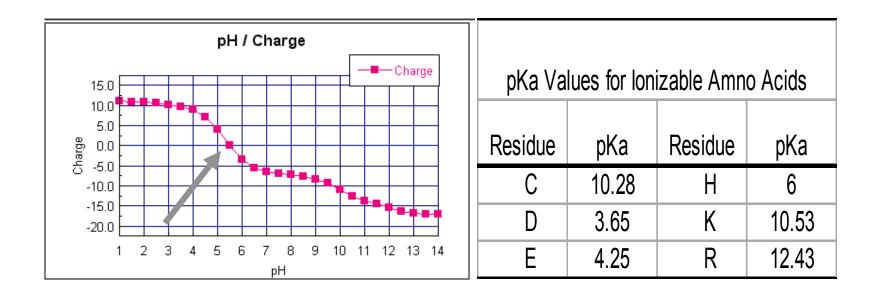
Amino Acid Residue Weights							
Residue	Residue	Weight					
A	71.08	M 131.21					
С	103.14	Ν	114.11				
D	115.09	Р	97.12				
E	129.12	Q	128.14				
F	147.18	147.18 R					
G	57.06	S	87.08				
Н	137.15	Т	101.11				
	113.17	V	99.14				
K	128.18	W	186.21				
L	113.17	Y	163.18				


Amino Acid versus Residue

Amino Acid

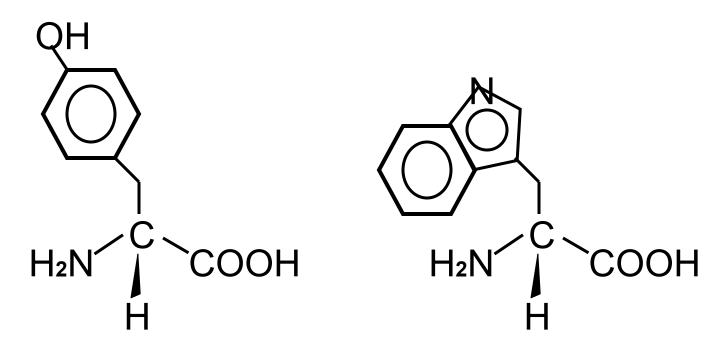
Residue

Molecular Weight & Proteomics


2-D Gel

QTOF Mass Spectrometry

Isoelectric Point*


• The pH at which a protein has a net charge=0 • $\mathbf{Q} = \Sigma \operatorname{Ni}/(1 + 10^{\mathrm{pH-pKi}})$

This is a transcendental equation

UV Absorptivity*

- OD₂₈₀ = (5690 x #W + 1280 x #Y)/MW x Conc.
- Conc. = OD₂₈₀ x MW/(5690 X #W + 1280 x #Y)

Very useful for measuring protein concentration

Hydrophobicity*

- Average Hphob calculation: H_{ave} = (ΣnAA_i x Hphob_i)/N
- Indicates Solubility, stability, location
- If H_{ave} < 1 the protein is soluble
- If H_{ave} > 1 it is likely a membrane protein

Kyte / Doolittle Hyrophobicity Scale							
Residue	Hphob	Residue	Hphob				
А	1.8	М	1.9				
С	2.5	Ν	-3.5				
D	-3.5	Р	-1.6				
E	-3.5	Q	-3.5				
F	2.8	R	-4.5				
G	-0.4	S	-0.8				
Н	-3.2	Т	-0.7				
Ι	4.5	V	4.2				
K	-3.9	W	-0.9				
L	3.8	Y	-1.3				

Annotation Methods

- Annotation by homology (BLAST)
 - requires a large, well annotated database of protein sequences
- Annotation by sequence composition
 - simple statistical/mathematical methods
- Annotation by sequence features, profiles or motifs
 - requires sophisticated sequence analysis tools

Where To Go

000	ExPASy: SIB Bioinformatics Resource Portal – Proteomics Tools						
ExPASy: SIB Bioinformatics Reso	+						
www.expasy.ch/tools/#proteon	ne 🏠 🧟 🕻 🖸 😭 🔹 🔍 🖈 🖾 🖬						
population genetics	Protein identification and characterization						
transcriptomics	Identification and characterization with peptide mass fingerprinting data						
biophysics	 FindMod 🌇 - Predict potential protein post-translational modifications and potential single amino acid 						
imaging	substitutions in peptides. Experimentally measured peptide masses are compared with the theoretical peptides calculated from a specified Swiss-Prot entry or from a user-entered sequence, and mass						
IT infrastructure	differences are used to better characterize the protein of interest.						
drug design	 FindPept Section - Identify peptides that result from unspecific cleavage of proteins from their experimental masses, taking into account artefactual chemical modifications, post-translational modifications (PTM) 						
Resources AZ	and protease autolytic cleavage						
Links/Documentation	 Mascot - Peptide mass fingerprint from Matrix Science Ltd., London PepMAPPER - Peptide mass fingerprinting tool from UMIST, UK 						
	ProFound - Search known protein sequences with peptide mass information from Rockefeller and NY						
	Universities [or from Genomic Solutions] ProteinProspector - UCSF tools for peptide masses data (MS-Fit, MS-Pattern, MS-Digest, etc.) 						
	Identification and characterization with MS/MS data						
	QuickMod - Open modification spectral library search tool for identification of MS/MS data						
	 Phenyx - Protein and peptide identification/characterization from MS/MS data from GeneBio, Switzerland 						
	 Mascot - Sequence query and MS/MS ion search from Matrix Science Ltd., London OMSSA - MS/MS peptide spectra identification by searching libraries of known protein sequences PepFrag - Search known protein sequences with peptide fragment mass information from Rockefeller and NY Universities 						
	 ProteinProspector - UCSF tools for fragment-ion masses data (MS-Tag, MS-Seq, MS-Product, etc.) 						
	Identification with isoelectric point, molecular weight and/or amino acid composition						
	 AACompIdent a - Identify a protein by its amino acid composition AACompSim a - Compare the amino acid composition of a UniProtKB/Swiss-Prot entry with all other entries 						
	• Tagldent a ldentify proteins with isoelectric point (<i>pI</i>), molecular weight (<i>Mw</i>) and sequence tag, or generate a list of proteins close to a given <i>pI</i> and <i>Mw</i>						
	 Multildent Solution - Identify proteins with isoelectric point (<i>pl</i>), molecular weight (<i>Mw</i>), amino acid composition, sequence tag and peptide mass fingerprinting data Other prediction or characterization tools 						
	Other prediction or characterization tools						

http://www.expasy.ch/tools/#proteome

Sequence Feature Databases

- PROSITE http://www.expasy.ch/prosite/
- InterPro http://www.ebi.ac.uk/interpro/
- **PPT-DB** http://www.pptdb.ca/

To use these databases just submit your PROTEIN sequence to the database and download the output. They provide domain information, predicted disulfides, functional sites, active sites, secondary structure – IF THERE IS A MATCH

Using Prosite

Expasy - prosite	
Expasy - prosite +	
Image: Sprosite.expasy.org [↑] The control of the contro	۹ 🔒 💽 -
profiles and patterns by providing additional information about functionally and/or structurally critical amino acids [More.].
Release 20.85, of 27-Sep-2012 (1656 documentation entries, 1308 patterns, 1048 profiles and 0 ProRule) PROSITE access	
<i>e.g.</i> PDOC00022, PS50089, Browse:	
SH3, zinc finger • by documentati Search □ add wildcard ^{1*1} • by ProRule des • by taxonomic s • by number of p	scription
PROSITE tools	
Scan a sequence against PROSITE patterns and profiles - quick scan	
(Output includes graphical view and feature detection)	
 ScanProsite - advanced scale PRATT - allows to interactive conserved patterns from a set proteins. MyDomains - Image Creator generate custom domain figure scale Scan Clear exclude patterns with a high probability of occurrence 	ely generate eries of unaligned or - allows to ires.
	×

Prosite Output

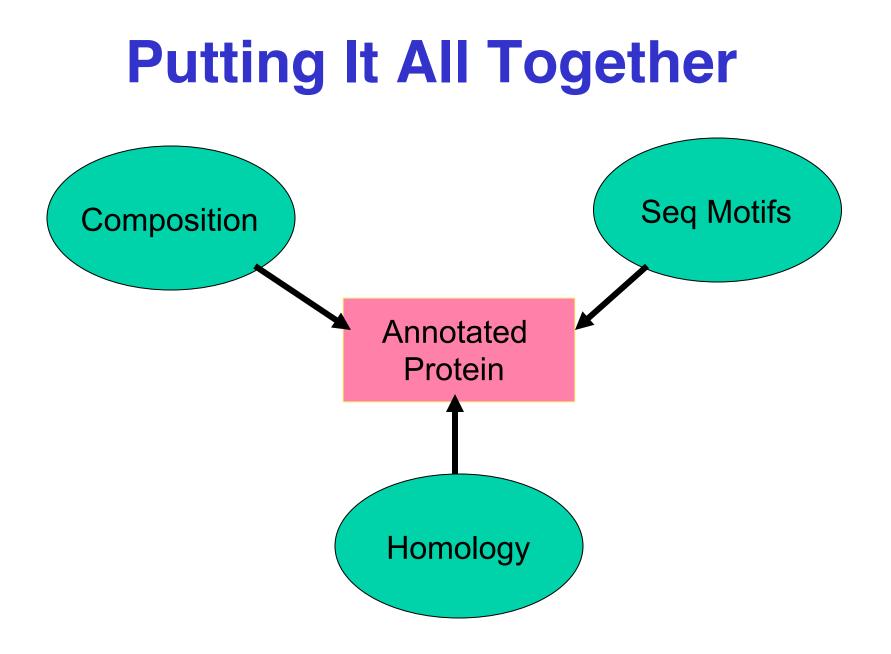
○ ○ PROSITE			
PROSITE +			
● prosite.expasy.org/cgi-bin/prosite/ScanView.cgi?scanfile=54479399137.scan.gz	۹ 🔒)
Hits by PS50835 IG_LIKE Ig-like domain profile :			n
P01621 (KV303_HUMAN) 16_LIKE (100 aa)			
RecName: Full=Ig kappa chain V-III region NG9; Flags: Precursor; Fragment;. Homo sapiens (Human)			
2 - 100: score = 10.825			
PSGEIVLtqspGTLSLSPGERATLS <u>C</u> RASQSVSSSYLAWYQQKPGQAPRLLIyga tsratgipdrfsgsaSGTDFTLTISRLEPEDFAVYY <u>C</u> QQYGNSQ			2
Predicted feature:			1
DISULFID 27 93 By similarity [condition: C-x*-C]			IJ
			l
hits by patterns with a high probability of occurrence or by user-defined patterns: [7 hits (by 3 distinct patterns) on 1 sequence]			I
P01621 (KV303_HUMAN) (100 aa) RecName: Full=lg kappa chain V-III region NG9; Flags: Precursor; Fragment;. Homo sapiens (Human)			
PS00006 CK2_PHOSPHO_SITE Casein kinase II phosphorylation site :			
18 - 21: SpgE			
Predicted feature: MOD_RES 18 Phosphoserine (By similarity) [condition: S]			
72 - 75: SgtD			
Predicted feature:			
MOD_RES 72 Phosphoserine (By similarity) [condition: S]			U
81 - 84: SrlE			A V
	$ \rightarrow $	4 F .	//.

What if your Sequence doesn't match to Something in the Database?

- Don't worry
- You can use prediction programs and freely available web servers that use machine learning, neural networks, HMMs and other cool bioinformatic tricks to predict some of the same things that your database matching tools try to identify

What Can Be Predicted?*

- O-Glycosylation Sites
- Phosphorylation Sites
- Protease Cut Sites
- Nuclear Targeting Sites
- Mitochondrial Targ Sites
- Chloroplast Targ Sites
- Signal Sequences
- Signal Sequence Cleav.
- Peroxisome Targ Sites


- ER Targeting Sites
- Transmembrane Sites
- Tyrosine Sulfation Sites
- GPInositol Anchor Sites
- PEST sites
- Coil-Coil Sites
- T-Cell/MHC Epitopes
- Protein Lifetime
- A whole lot more....

Cutting Edge Sequence Feature Servers*

- Membrane Helix Prediction
 - http://www.cbs.dtu.dk/services/TMHMM-2.0/
- T-Cell Epitope Prediction
 - http://www.syfpeithi.de/home.htm
- O-Glycosylation Prediction
 - http://www.cbs.dtu.dk/services/NetOGlyc/
- Phosphorylation Prediction
 - http://www.cbs.dtu.dk/services/NetPhos/
- Protein Localization Prediction
 - http://psort.ims.u-tokyo.ac.jp/

2º Structure Prediction*

- PredictProtein-PHD (72%)
 - http://www.predictprotein.org
- Jpred (73-75%)
 - http://www.compbio.dundee.ac.uk/~www-jpred/
- PSIpred (77%)
 - http://bioinf.cs.ucl.ac.uk/psipred/
- Proteus2 (78-90%)
 - http://www.proteus2.ca/proteus2/

http://basys.ca/basys/cgi/submit.pl

- BASys (Bacterial Annotation System) is a web server that performs automated, indepth annotation of bacterial genomic sequences
- It accepts raw DNA sequence data and an optional list of gene identification information and provides extensive textual and hyperlinked image output

- BASys uses more than 30 programs to determine nearly 60 annotation subfields for each gene, including:
- Gene/protein name, GO function, COG function, possible paralogues and orthologues, molecular weight, isoelectric point, operon structure, subcellular localization, signal peptides, transmembrane regions, secondary structure, 3-D structure and reactions

Submitting to BASys

🕲 BASys: Bacterial Annotat	ion System - Netscape			
<mark>_ Eile E</mark> dit ⊻iew <u>G</u> o Bookmar	rks <u>T</u> ools <u>W</u> indow <u>H</u> elp			
	http://wishart.biology.u	ialberta.ca/basys/cgi/submit.pl		
🕘 New Tab 🔍 BASys: Bacteria	al Annotation System			×
BASys Chromosome	Submission			
For assistance on running B	ASys you may wish to check o	out the <u>BASys HOWTO</u> .		
Email Address (Required)				1
An email address is requi	ired to notify you of progress an	id results.		
*Email Address:]		-
Taxonomy (Fields marked	1 with * are required)			1
*Chromosome Identifier:		(for identifying output files)		
*Gram Stain:	○Positive ○Negative			=
Genus:				
Species:				
Strain:				
Description:				
Chromosome (Required) –				
Upload your FASTA-forma	atted bacterial chromosome sec	quence (<u>Example</u>) :		
		Browse		
Chromosome is: 💿 Circ				
Genetic Code: Bacter	rial 💌			
I	·	Submit		
Gene Identification (Option	nal)			1
	otide coding regions from the ch	hromosome sequence using <u>Glimmer</u> (d	efault),	
🛃 start 🔰 🗁 CBRi-20	004 💼 IntroBioin20	004 🛞 BASys: Bacterial Ann	1.6ProteAnno2005	🔇 🚅 🎎 🎘 📕 🛞 5:43 PM

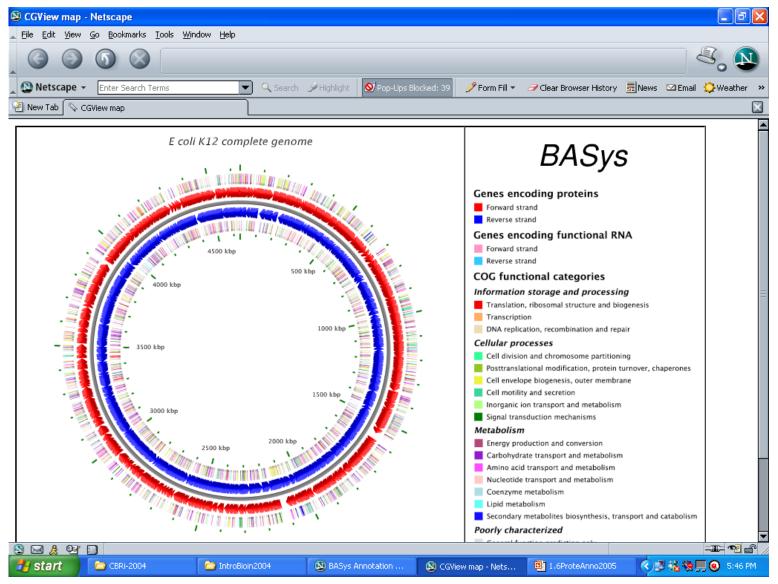
Wait...

BASys Output

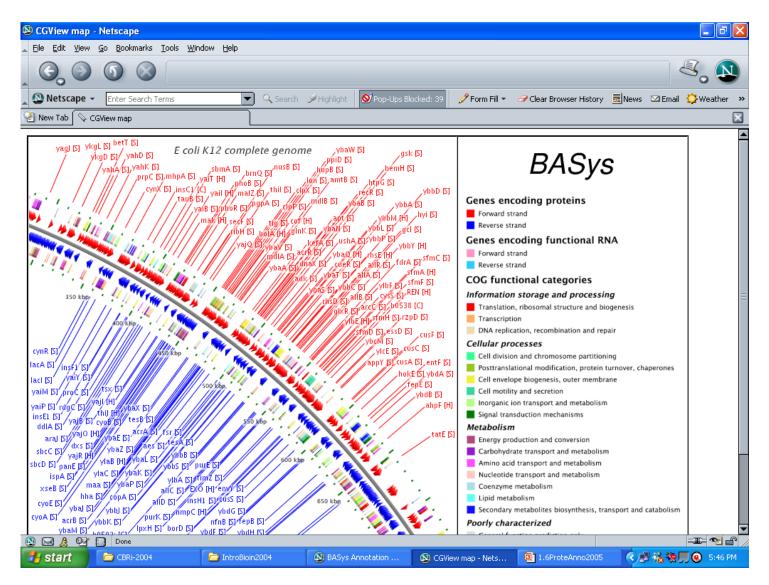
🕸 BASys Annotation Table - Netscape	- P	×
<u>File Edit View Go Bookmarks Tools Window H</u> elp		
Co S S Ktp://wishart.biology.ualberta.ca/basys/gallery/example_1/index.html	3. 🔊	
🔺 🗇 🐔 Home 🔤 Netscape 🔍 Search 🛇 Instant Message 🛇 WebMail 🛇 Radio 🛇 People 🛇 Yellow Pages 🛇 Download 🛇 Calendar 🗂 Channels		
🗴 🥸 Netscape 👻 Enter Search Terms 🔍 🔍 Search 🖉 Highlight 🚺 Pop-Ups Blocked: 39 🥜 Form Fill 👻 🧭 Clear Browser History 👼 News 🖙 Em	ail 🔅 Weather	»
😢 New Tab 🛇 BA5ys Annotation Table	[×

BASys Annotation Summary

Chromosome Id: E coli K12 complete genome Length: 4639675 Gram Stain: Negative Topology: circular Number of Genes Identified: 4254 Number of Genes Annotated: 4254


View Map | View Table | Text Search | BLAST Search |

Downloads:


- With Evidence Cards (837.89 Mb)
- Without Evidence Cards (70.54 Mb)
- Annotation Text Only (10.63 Mb)
- Protein Fasta File
- Gene Fasta File
- <u>Chromosome Fasta File</u>
- <u>README</u>

BASys Output (Map)

BASys Output (Map)

BASys Output (Gene Link)

BASys Gene Card -					×					
Ele Edit Yew Go B	lookmarks Iools Window Help									
				ి. 🕹	•					
Netscape - Ent		Highlight OPop-Ups B	slocked: 39 🥜 Form Fill 👻 🥔 Clear Browser History 📃 News	🖾 Email 🔅 Weather	»					
🕙 New Tab 🛇 BASys G	ene Card				×					
The map label for thi	is gene is mdlB [S]									
	otation Map Annotation Table	BASys Gene Card -	Notecano							
Creation Date	2005/4/13 7:17:14 GMT	0 500,0 500 500 5	Bookmarks Tools Window Help							
Entry ID Accession No.	BASYS00439.1 BASYS00439	696					S. N			
SWISS PROT (AC	NDLB ECOLI (P75706)	Netscape - End	ter Search Terms 💽 🔍 Search 🖋 Highlight	Q Popul Inc Blockada 2	9 🥖 Form Fill 👻 🥥 Clear Browser His	toru Elbiaur Memai	Weather 12			
and ID)		New Tab SASys G								
	- ENBL: <u>L08627</u> - ENBL: <u>AE000151</u> - ENBL: <u>U82664</u> - ENBL: <u>AE016756</u>	Alternate Gene	BASYSO0439				Ê			
	- ENBL: <u>AE010/30</u> - ENBL: <u>AE005224</u> - ENBL: <u>AP002551</u> - PIR: <u>A64775</u>	Upstream 100 Bases	>100_bases GTGCTGGCACAACAAAGCGGCTGGTATCGCGATATGTAT	CGCTATCAACAACTGG	SAGGCG					
Other Databases	- PIR: C85542 - PIR: G90691 - HSSP: P08716		GCGCTCGACGACGCTCCGGAAAATCGCGAGGAGGCCGTC ATGCGTAGTTTTAGCCAACTGTGGCCGACTCTCAAGCGC TGGCGTAAACCGCTGGGATTGCGGTCCTGATGATGGG	CTGTTAGCGTACGGTT	resces					
	- EchoBASE: EB4117 - EcoGene: EG14374		AGTGGGCCGCTGCTTATCAGCTATTTTATCGACAATATG	🖾 BASys Gene Card -	Netscape					
	- InterPro: IPR003593 - InterPro: IPR001140 - InterPro: IPR003439		TTGAAAGTGGTTGCAGGGCTGGCTGCGCGCGTATGTTGGG CTACATTACGCGCAGTCGCTGCTGCTGCTTTAATCGGCGGCA CGTACCGACGTGATGGATGCTGCGTTAACGCCAGCATTA GTCGGGCAGGTGATTTCCCGCGTCACTAATGACACTGAA		Bouuraus Tone Winnow Each			3		
	- ProDom: PD000006 - SMART: SM00382 [S]		ACCGTAGTGGCAACTGTCCTGCGCAGTGCCGCGCTGGTG TTCAGCCTCGACTGGCGAATGGCACTGGTGGCGATAATG	🕒 Netscape 👻 En		earch 🌛 Highlight 🚺	Pop-Ups Blocked: 39 🧳	Form Fill 👻 🥔 Clear Browser History 🔜 News 🖾 Email 😳 Weat	her »	
Gene Position	469860-471641 (Clockwise)		GCGGATATCAACGACGGCTTTAACGAAATCATCAATGGC	E New Tab V BASYS C	Sene Card				×	
Centisome Position	10.13		CGTCAGCAGGCGCGATTTGGCGAACGTATGGGGGAGGCC AGGATGCAAACCCTGCGCCTCGACGGTTTTCTGCTGCGT	Preceding Gene	mdlà				Â	
Gene Name	mdlB [S]	Gene Sequence	TCGCTCATTCTTTGTGGCTTGTTGATGCTGTTTGGCTTC GTGGGCGTGCTGTATGCGTTTATCAGCTATCTTGGGCGA	Following Gene	ginK					
🕲 🖂 🏨 🔁 💷 💷		Gene Sequence	CTGACCACGCAACAGGCGATGCTGCCAACAGGCTGTTGTT CTGATGGACGGACCGCGCCCAGCAATATGGCAATGATGAT		Yes					
	I	-	ATCGAAGTCGATAACGTGTCATTTGCTTATCGCGATGAC AATCTCTCTGTGCCTTCGCGCAATTTTGTGGCGCCTGGTC	Components	ybaO; mdlk; mdlB					
			AGCACCCTCGCCAGTTTATTGATGGGCTATTACCCGCTA GATGGTCGTCCATTAAGTTCGCTAAGTCACAGCGCGCTG		Multidrug resistance-like	TP-binding prote: BASys Gene Card - N				
			CAGCAAGATCCGGTGGTGCTGGCGGGATACCTTCCTCGCC ATCTCCGAAGAACGCGTCTGGCAGGCGCTGGAAACCGTG	Names	Not Available		ookmarks Iools Window	Belp		
			AGCATGAGCGACGGTATTTACACGCCGCTGGGCGAGCAG CAAAAGCAACTGCTGGCACTGGCGCGCGCGTGCTGGTCGAG		>Translated 593 residues MRSFSQLWPTLKRLLAYGSPWRKPLG	6.00				ي 🖉
			GATGAGGCAACCGCCAGCATTGACTCCGGTACTGAACAG GCGGTGCGTGAACATACCACGCTGGTAGTGATTGCTCAC		LKVVAGLAAAYVGLQLFAAGLHYAQS VGQVISRVTNDTEVIRDLYVTVVATV	Netscape - Ente	er Search Terms	🗨 🔍 Search 🥒 Highlight 🕺 Pop-Ups Blocked: 39 🥜 F	orm Fill 🔹 🥜 Clear Browser History 👼 N	lews ⊠Email 🗘Weather ≫
		S I & OT I I	GCCGACACCATTCTGGTGCTTCATCGTGGGCAAGCCGTG		VMVIYQRYSTPIVRRVRAYLADINDG RMQTLRLDGFLLRPLLSLFSSLILCG		ene Card	; PS00211 ABC_TRANSPORTER_1 ; PS50893	1	
		🐉 start 📄			LTTQQAMLQQAVVAGERVFELMDGPR NLSVPSRNFVALVGHTGSGKSTLASL QODPVVLADTFLANVTLGRDISEERV		ABC_TRANSPORTER_	[S]		Î
					QCDFVVLADIFLANVILGRDISEERV QKQLLALARVLVETPQILILDEATAS ADTILVLHRGOAVEOGTHOOLLAAOG	Specific Function	Unknown			
				Sequence	>Mature_593_residues MRSFSQLWPTLKRLLAYGSPWRKPLG	Importance	Unknown [C]			
					LKVVAGLAAAYVGLQLFAAGLHYAQS VGQVISRVTNDTEVIRDLYVTVVATV		Defense mechanism			
					VMVIYQRYSTPIVRRVRAYLADINDG RMQTLRLDGFLLRPLLSLFSSLILCG	COGID	permease componen	multidrug transport system, ATPase and its		
					LTTQQAMLQQAVVAGERVFELMDGPR NLSVPSRNFVALVGHTGSGKSTLASL		>>> Function: binding			
					QQDPVVLADTFLANVTLGRDISEERV OKOLLALARVLVETPOILILDEATAS		Function: nucleor Function: cataly	ic activity		
				S 🖂 🖉 🗊 🛙	ADTILVLHRGQAVEQGTHQQLLAAQG		Function: hydrols Function: hydrols	se activity, acting on acid anhydrides		
				🛃 start 🔰 🖻			Function: hydrole phosphorus-conta:	se activity, acting on acid anhydrides, in ning anhydrides		
								activity, coupled		
							of substances	activity, coupled to transmembrane movement ding cassette (ABC) transporter activity		
								and case-one (and) transporter activity		
							Function: hydrole	se activity, acting on acid anhydrides, embrane movement of substances		
							Function: ATPase of substances	activity, coupled to transmembrane movement		
							Function: ATP-bin	ding cassette (ABC) transporter activity		
							>>> Function: transpo			
					1	S 🖂 & 97 🗊 🗠	Function: carries	activity	I	-I- •2 🖬
								IntroBioin2004 🚯 BASys Annotation 🚯 BASys Gene	Card 📴 1.6ProteAnno2005 (

Conclusion

- Genome annotation is the same as proteome annotation – required after any gene sequencing and gene ID effort
- Can be done either manually or automatically
- Need for high throughput, automated "pipelines" to keep up with the volume of genome sequence data
- Area of active research and development with about ½ of all bioinformaticians working on some aspect of this process