Gene Structure & Gene Finding: Part II

David Wishart david.wishart@ualberta.ca

Contacting Me...

- 200 emails a day not the best way to get an instant response
- Subject line: Bioinf 301 or Bioinf 501
- Preferred method...
 - Talk to me after class
 - Talk to me before class
 - Ask questions in class
 - Visit my office after 4 pm (Mon. Fri.)
 - Contact my bioinformatics assistant Dr.
 An Chi Guo (anchiguo@gmail.com)

Lecture Notes Available At:

- http://www.wishartlab.com/
- Go to the menu at the top of the page, look under Courses

Outline for Next 3 Weeks

- Genes and Gene Finding (Prokaryotes)
- Genes and Gene Finding (Eukaryotes)
- Genome and Proteome Annotation
- Fundamentals of Transcript Measurement
- Introduction to Microarrays
- More details on Microarrays

Assignment Schedule

Gene finding - genome annotation

- (Assigned Oct. 31, due Nov. 7)

Microarray analysis

- (Assigned Nov. 7, due Nov. 19)

Protein structure analysis

- (Assigned Nov. 21, due Nov. 28)

Each assignment is worth 5% of total grade, 10% off for each day late

Objectives*

- Learn key features of eukaryotic gene structure and transcript processing
- Learn/memorize a few key eukaryotic gene signature sequences
- Learn about RNA→ cDNA preparation
- Review algorithms and web tools for eukaryotic gene identification
- Measuring/assessing gene prediction (limitations, methods)

DNA the molecule of life **Trillions of cells** Each cell: 46 human chromosomes 2 m of DNA 3 billion DNA DNA subunits (the bases: A, T, C, G) 23,000 genes code for proteins that perform all life functions

chromosomes gene

protein

metabolite

cell

Gene Finding in Eukaryotes

Eukaryotes*

- Complex gene structure
- Large genomes (0.1 to 10 billion bp)
- Exons and Introns (interrupted)
- Low coding density (<30%)
 3% in humans, 25% in Fugu, 60% in yeast
- Alternate splicing (40-60% of all genes)
- High abundance of repeat sequence (50% in humans) and pseudo genes
- Nested genes: overlapping on same or opposite strand or inside an intron

Eukaryotic Gene Structure*

Eukaryotic Gene Structure*

RNA Splicing*

Exon/Intron Structure (Detail)

Intron Phase*

- A codon can be interrupted by an intron in one of three places
 - Phase 0: ATGATTGTCAG...CAGTAC
 - Phase 1: ATGATGTCAG...CAGTTAC
 - Phase 2: ATGAGTCAG...CAGTTTAC

SPLICE

AGTATTTAC

Repetitive DNA*

- Moderately Repetitive DNA
 - Tandem gene families (250 copies of rRNA, 500-1000 tRNA gene copies)
 - Pseudogenes (dead genes)
 - Short interspersed elements (SINEs)
 - 200-300 bp long, 100,000+ copies, scattered
 - Alu repeats are good examples
 - Long interspersed elements (LINEs)
 - 1000-5000 bp long
 - 10 10,000 copies per genome

Repetitive DNA*

- Highly Repetitive DNA
 - Minisatellite DNA
 - repeats of 14-500 bp stretching for ~2 kb
 - many different types scattered thru genome
 - Microsatellite DNA
 - repeats of 5-13 bp stretching for 100's of kb
 - mostly found around centromere
 - Telomeres
 - highly conserved 6 bp repeat (TTAGGG)
 - 250-1000 repeats at end of each chromosome

Key Eukaryotic Gene Signals*

- Pol II RNA promoter elements
 - Cap and CCAAT region
 - GC and TATA region
- Kozak sequence (Ribosome binding site-RBS)
- Splice donor, acceptor and lariat signals
- Termination signal
- Polyadenylation signal

Pol II Promoter Elements*

- Cap Region/Signal
 n C A G T n G
- TATA box (~ 25 bp upstream)
 TATAAAAnGCCC
- CCAAT box (~100 bp upstream)
 TAGCCAATG
- GC box (~200 bp upstream)

– A T A G G C G n G A

Pol II Promoter Elements

TATA box is found in ~70% of promoters

WebLogos

http://weblogo.berkeley.edu/

Kozak (RBS) Sequence*

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 A G C C A C C A T G G

Splice Sites*

- Not all splice sites are real
- ~0.5% of splice sites are non-canonical (i.e. the intron is not GT...AG)
- It is estimated that 5% of human genes may have non-canonical splice sites
- ~50% of higher eukaryotes are alternately spliced (different exons are brought together)

Miscellaneous Signals*

- Polyadenylation signal
 - **A A T A A A or A T T A A A**
 - Located 20 bp upstream of poly-A cleavage site
- Termination Signal
 A G T G T T C A
 - Located ~30 bp downstream of poly-A cleavage site

Polyadenylation*

Why Polyadenylation is Really Useful

Complementary Base Pairing

mRNA isolation*

- Cell or tissue sample is ground up and lysed with chemicals to release mRNA
- Oligo(dT) beads are added and incubated with mixture to allow A-T annealing
- Pull down beads with magnet and pull off mRNA

Making cDNA from mRNA*

cDNA (i.e. complementary DNA) is a single-stranded **DNA** segment whose sequence is complementary to that of messenger RNA (mRNA)

 Synthesized by reverse transcriptase

Reverse Transcriptase

Finding Eukaryotic Genes Experimentally

Convert the spliced mRNA into cDNA

- Only expressed genes or expressed sequence tags (EST's) are seen
- Saves on sequencing effort (97%)

Finding Eukaryotic Genes Computationally*

- Content-based Methods
 - GC content, hexamer repeats, composition statistics, codon frequencies
- Site-based Methods
 - donor sites, acceptor sites, promoter sites, start/stop codons, polyA signals, lengths
- Comparative Methods
 - sequence homology, EST searches
- Combined Methods

Content-Based Methods*

- CpG islands
 - High GC content in 5' ends of genes
- Codon Bias
 - Some codons are strongly preferred in coding regions, others are not
- Positional Bias
 - 3rd base tends to be G/C rich in coding regions
- Ficketts Method
 - looks for unequal base composition in different clusters of i, i+3, i+6 bases - TestCode graph

TestCode Plot

Comparative Methods*

- Do a BLASTX search of all 6 reading frames against known proteins in GenBank
- Assumes that the organism under study has genes that are homologous to known genes (used to be a problem, in 2001 analysis of chr. 22 only 50% of genes were similar to known proteins)
- BLAST against EST database (finds possible or probable 3' end of cDNAs)

BLASTX

000	blastx: search protein databases using a translated nucleotide query
() · C ×) 🍙 😢 http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&BLAST_PROGRAMS=blastx&PAGE_T 🏫 🔻 🖓 🎸 Google 🔍
Most Visited - Getting S	tarted Latest Headlines እ
S blastx: search proteir	n databases u +
BLAST [®] Home Recent	Basic Local Alignment Search Tool My NCBI Image: Color of the search Tool Results Saved Strategies Help Isign Inj [Register]
NCBI/ BLAST/ blastx	
blastn blastp blas	tx tblastn tblastx
Enter Query Se	BLASTX search protein databases using a translated nucleotide query. more Reset page Bookmark
Enter accession nu	Imber(s), gi(s), or FASTA sequence(s) (a) Clear Query subrange (a)
	From
	То
Or, upload file	Repute
Genetic code	Standard (1)
Job Title	
	Enter a descriptive title for your BLAST search)
Align two or mo	re sequences 😣
Choose Search	Set
Database	Non-redundant protein sequences (nr)
Organism	Enter emerging name or id-completions will be suggested
Optional	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.
Exclude	□ Models (XM/XP) □ Uncultured/environmental sample sequences
Entrez Query	
Optional	Enter an Entrez query to limit search ()
BLAST	Search database Non-redundant protein sequences (nr) using Blastx (search protein databases using a translated nucleotide query)
	Show results in a new window
Done	/

Site-Based Methods*

- Based on identifying gene signals (promoter elements, splice sites, start/ stop codons, polyA sites, etc.)
- Wide range of methods
 - consensus sequences
 - weight matrices
 - neural networks
 - decision trees
 - hidden markov models (HMMs)

Neural Networks

- Automated method for classification or pattern recognition
- First described in detail in 1986
- Mimic the way the brain works
- Use Matrix Algebra in calculations
- Require "training" on validated data
- Garbage in = Garbage out

Neural Networks

aining Input Hidden Set Layer Layer

Neural Network Applications

- Used in Intron/Exon Finding
- Used in Secondary Structure Prediction
- Used in Membrane Helix Prediction
- Used in Phosphorylation Site Prediction
- Used in Glycosylation Site Prediction
- Used in Splice Site Prediction
- Used in Signal Peptide Recognition

Neural Network*

Back Propagation*

Calculate New Output*

Train on Second Input Vector*

Back Propagation*

After Many Iterations....

Two "Generalized" Weight Matrices

Neural Networks Matrix1 Matrix2 ACGAGG EEEENN **New pattern Prediction**

Input Input Hidden Output Layer Layer

HMM for Gene Finding

Combined Methods

- Bring 2 or more methods together (usually site detection + composition)
- GrailEXP (http://compbio.ornl.gov/Grail-1.3/)
- GeneMark-E (http://exon.biology.gatech.edu/)
- **HMMgene** (http://www.cbs.dtu.dk/services/HMMgene/)
- **GENSCAN**(http://genes.mit.edu/GENSCAN.html)
- GRPL (GeneTool/BioTools)

Genscan*

000	New GENSCAN W	eb Server at MIT		
▲ ► ⓓ ♣ A A + heta http://genes.	nit.edu/GENSCAN.html		Ç	Q• Google
🛱 🇰 Department oell Biology Login- Depar	f Alberta 🛛 Audiobaba Music Search	Bioinformati the U of A!	Coilgun Basics 2 Pat	hguide: tesource list >>>
? For information about Genscan, click h	ere			
This server provides access to the program Gensca organisms.	of or predicting the locations and	exon-intron structures of g	enes in genomic sequ	ences from a variety of
This server can accept sequences up to 1 million ba process, request a local copy of the program (see in support file upload or multipart forms, use the <u>older</u>	se pairs (1 Mbp) in length. If you structions at the bottom of this paversion.	a have trouble with the web age) or use the <u>GENSCAN</u>	o server or if you have email server. If your	e a large number of sequences to browser (<i>e.g.</i> , Lynx) does not
Organism: Vertebrate 🛟 Suboptimal exon cutoff	(optional): 1.00 🛟			
Sequence name (optional):				
Print options: Predicted peptides only				
Upload your DNA sequence file (one-letter code, u	pper or lower case, spaces/numb	ers ignored): Choose File	no file selected	
Or paste your DNA sequence here (one-letter code To have the results mailed to you, enter your email	upper or lower case, spaces/nur address here (optional):	nbers ignored):		
Run GENSCAN Clear Input				4
Back to the top				

How Do They Work?*

GENSCAN

- 5th order Hidden Markov Model
- Hexamer composition statistics of exons vs. introns
- Exon/intron length distributions
- Scan of promoter and polyA signals
- Weight matrices of 5' splice signals and start codon region (12 bp)
- Uses dynamic programming to optimize gene model using above data

How Well Do They Do?

How Well Do They Do?*

Programme # of		Nucleotide acci		racy				E	Exon accuracy						
rograms seq	Sn	Sp	AC	CC	ESn	ESp	Œ:	in+ES ₂	v2	ME	WE	PCa	РСр	OL	
FGENES	195(5)	0.86	0.88	0.84	0.83	0.67	0.67		0.69		0.12	0.09	0.20	0.17	0.02
GeneMark	195(0)	0.87	0.89	0.84	0.83	0.53	0.54		0.54		0.13	0.11	0.29	0.27	0.09
Genie	195(15)	0.91	0.90	0.89	0.88	0.71	0.70		0.71		0.19	0.11	0.15	0.15	0.02
Genscan	195(3)	0.95	0.90	0.91	0.91	0.70	0.70		0.71		<mark>0.08</mark>	0.09	0.21	0.19	0.02
HMMgene	195(5)	0.93	0.93	0.91	0.91	0.76	0.77		0.76		0.12	0.07	0.14	0.14	0.02
Morgan	127(0)	0.75	0.74	0.70	0.69	0.46	0.41		0.43		0.20	0.28	0.28	0.25	0.07
MZEF	119(8)	0.70	0.73	0.68	0.66	0.58	0.59		0.59		<mark>0.32</mark>	<mark>0.23</mark>	<mark>0.08</mark>	0.16	0.01

"Evaluation of gene finding programs" S. Rogic, A. K. Mackworth and B. F. F. Ouellette. Genome Research, 11: 817-832 (2001).

BUT "biased" random prediction = 90% correct

Gene Prediction (Evaluation)*

Sensitivity Measure of the % of false negative results (sn = 0.996 means 0.4% false negatives)

Specificity Measure of the % of false positive results

Precision Measure of the % positive results

Correlation Combined measure of sensitivity and specificity

Gene Prediction (Evaluation)

Sensitivity or Recall Sn=TP/(TP + FN)

Specificity S

Sp=TN/(TN+FP)

 $Precision \qquad Pr=TP/(TP+FP)$

Correlation

*CC=(TP*TN-FP*FN)/[(TP+FP)(TN+FN)(TP+FN)(TN+FP)]^{0.5} This is a better way of evaluating*

Different Strokes for Different Folks

- Precision and specificity statistics favor conservative predictors that make no prediction when there is doubt about the correctness of a prediction, while the sensitivity (recall) statistic favors liberal predictors that make a prediction if there is a chance of success.
- Information retrieval papers report precision and recall, while bioinformatics papers tend to report specificity and sensitivity.

Gene Prediction Accuracy at the Exon Level *

Specificity S

S_p =

number of predicted exons

Better Approaches Are Emerging...

- Programs that combine site, comparative and composition (3 in 1)
 – GenomeScan, FGENESH++, Twinscan
- Programs that use synteny between organisms
 - ROSETTA, SLAM, SGP
- Programs that combine predictions from multiple predictors

- GeneComber, Augustus

GenomeScan - http://genes.mit.edu/ genomescan.html

Run GenomeScan:	
Organism: Vertebrate 💌	
Sequence name (optional):	
Print options: Predicted peptides only	
Upload your DNA sequence file (one-letter code, upper or l	ower case, spaces/numbers ignored):
Or paste your DNA sequence here (one-letter code, upper -	or lower case, spaces/numbers ignored):
Document: Done	

TwinScan - http://mblab.wustl.edu/ nscan/submit/ (requires Login)

Augustus — http://bioinf.unigreifswald.de/augustus/submission/

000	Augustus: job s	ubmission			
▲ ►	A http://augustus.gobics.de/submission			C Q- Google	
Department oell Biology	Login- Depar of Alberta Audiobaba Music Search	Bioinformati the U of A!	Coilgun Basics 2	Pathguide: tesource list	>>
Augus Paste your sequend	tus [job submiss ce(s) here help	sion]			
or upload a file in (multip Choose File no file selected or <u>fill in an example</u> . Organism: <u>Homo sapiens</u> Report genes on: • both Alternative transcripts: • Reset all input <u>Run AUGUSTUS</u>	ole) FASTA format	e strand only			
expert options					4
()) 4 1+
the same time and the strength of the same					11

Even More Tools...

genepredictio	n.org	geneprediction.org							
www.genepredi	ction.org/software	e.html	ద్ది ⊂ ఆ 🕄 🕈 Diogenes	۹ 🔒 🚺 -					
ACACGTATCTG:	gei	nepredictic	on.org						
	Software								
Legend: GF=gene finder; OS=open source; RP=related program or software									
Projec	<u>ct</u>	Description	<u>Contacts</u>						
mGen	<u>e</u>	GF OS GHMM / SVM eukaryotic gene finder	Gunnar Raetsch						
SNAP		GF OS GHMM eukaryotic gene finder	<u>Ian Korf</u>						
<u>Genez</u> TIGR:	<u>Cilla</u> (formerly scan)	GF OS GHMM eukaryotic gene finder	Bill Majoros						
Glimn	nerHMM	GF OS GHMM eukaryotic gene finder	Mihaela Pertea						
TWIN	ISCAN	GF OS GHMM informant method for comparative gene finding	Michael Brent	Ų ≜					
Chem	Genome	nrokarvotic, ab initio gene finder based on physico-chemic	al Shailesh						

An active list of gene prediction programs (prok and euk)

Gene Finding with GenScan & Company

- Go to your preferred website
- Paste in the DNA sequence of your favorite EUKARYOTIC genome (this won't work for prokaryotic genomes and it won't necessarily work for viral or phage genomes)
- Press the submit button
- Output will typically be presented in a new screen or emailed to you
Outstanding Issues*

- Most Gene finders don't handle UTRs (untranslated regions)
- ~40% of human genes have non-coding 1st exons (UTRs)
- Most gene finders don't' handle alternative splicing
- Most gene finders don't handle overlapping or nested genes
- Most can't find non-protein genes (tRNAs)

Bottom Line...

- Gene finding in eukaryotes is not yet a "solved" problem
- Accuracy of the best methods approaches 80% at the exon level (90% at the nucleotide level) in coding-rich regions (much lower for whole genomes)
- Gene predictions should always be verified by other means (cDNA sequencing, BLAST search, Mass spec.)
- Homework: Try testing some of the web servers I have mentioned today

How Many Genes in the Human Genome?

- 1969 2,000,000
- 1999 100,000
- 2000 ~50 researchers placed bets and guessed between 27,462 to 153,478 genes
- 2001 30-40,000
- 2003 23,299 (ENSEMBL)
- **2004 20-25,000**
- 2008 21,787 (Genome Consortium)
- 2012 20,687 protein-coding genes determined by in vitro gene expression in multiple cell lines (not by computers)