Gene Structure & Gene Finding: Part I

David Wishart Rm. 3-41 Athabasca Hall david.wishart@ualberta.ca

Contacting Me...

- 200 emails a day not the best way to get an instant response
- Subject line: Bioinf 301 or Bioinf 501
- Preferred method...
 - Talk to me after class
 - Talk to me before class
 - Ask questions in class
 - Visit my office after 4 pm (Mon. Fri.)
 - Contact my bioinformatics assistant Dr.
 An Chi Guo (anchiguo@gmail.com)

Lecture Notes Available At:

- http://www.wishartlab.com/
- Go to the menu at the top of the page, look under Courses

Outline for Next 3 Weeks

- Genes and Gene Finding (Prokaryotes)
- Genes and Gene Finding (Eukaryotes)
- Genome and Proteome Annotation
- Fundamentals of Transcript Measurement
- Introduction to Microarrays
- More details on Microarrays

My Lecturing Style

- Lots of slides with limited text (room to add notes to the slides based on verbal information)
- If you don't show up to the lectures you'll miss most of the verbal information (sure to fail)
- Bioinformatics is mostly done on the web, key is knowing where to go and how to use websites
- I want you to spend some time (15-20 min) after each lecture to try/test the websites on your own
- Assignments build on what you' ve learned in class but also are intended to make you learn additional material to greater depth

Assignment Schedule

Gene finding - genome annotation

- (Assigned Oct. 31, due Nov. 7)

Microarray analysis

- (Assigned Nov. 7, due Nov. 19)

Protein structure analysis

- (Assigned Nov. 21, due Nov. 28)

Each assignment is worth 5% of total grade, 10% off for each day late

Objectives*

- Review DNA structure, DNA sequence specifics and the fundamental paradigm
- Learn key features of prokaryotic gene structure and ORF finding
- Learn/memorize a few key prokaryotic gene signature sequences
- Learn about PSSMs and HMMs
- Learn about web tools for prokaryotic gene identification

Slides with a * are ones that are important (could be on the test)

DNA the molecule of life **Trillions of cells** Each cell: 46 human chromosomes 2 m of DNA 3 billion DNA DNA subunits (the bases: A, T, C, G) 23,000 genes code for proteins that perform all life functions

chromosomes gene

protein

metabolite

cell

DNA Structure

DNA - base pairing*

Hydrogen Bonds

Base Stacking

Hydrophobic Effect

Base-pairing (Details)*

DNA Basepairs

2 H-bonds

$HO-CH_{C}$ Guanosine-Cytidine (Guanine-Cytosine)

н

3 H-bonds

DNA Sequences 5'

3'

Single: ATGCTATCTGTACTATATGATCTA

5'3' Paired: ATGCTATCTGTACTATGATCTA TACGATAGACATGATATACTAGAT

Read this way----> 5' 3' ATGATCGATAGACTGATCGATCGATCGATTAGATCC TACTAGCTATCTGACTAGCTAGCTAGCTAATCTAGG 3' 5' <---Read this way

DNA Sequence Nomenclature*

The Fundamental Paradigm

RNA Polymerase

The Genetic Code*

			SECON	D BASE	
nah		U	С	A	G
	U	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA UAA TERM UAG	UGU Cys UGC UGA TERM UGG Trp
BASE	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG	CGU CGC CGA CGG
FIRST	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIU	GGU GGC GGA GGG

Translating DNA/RNA*

Y S Frame3 Α D н Α С V * R С Frame2 Α Μ Frame1 R Α Μ R ATGCGTATAGCGATGCGCATT TACGCATATCGCTACGCGTAA н Frame-1 R н Ν Т Υ Α Frame-2 R Α R Μ Y Frame-3 Α S Α С

DNA Sequencing

Shotgun Sequencing*

Next Gen DNA Sequencing

ABI SOLiD - 20 billion bases/run Sequencing by ligation

Illumina/Solexa 15 billion bases/run Sequencing by dye termination

Shotgun Sequencing

Sequence Chromatogram Send to Computer

Assembled Sequence

Shotgun Sequencing

- Very efficient process for small-scale (~10 kb) sequencing (preferred method)
- First applied to whole genome sequencing in 1995 (*H. influenzae*)
- Now standard for all prokaryotic genome sequencing projects
- Successfully applied to *D. melanogaster*
- Moderately successful for *H. sapiens*

The Finished Product

GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA **TTACAGATTACAGATTACAGATTACAGATTACAGAT** TACAGATTAGAGATTACAGATTACAGATTACAGATT ACAGATTACAGATTACAGATTACAGATTA CAGATTACAGATTACAGATTACAGATTACAGATTAC AGATTACAGATTACAGATTACAGATTACAGATTACA GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA **TTACAGATTACAGATTACAGATTACAGATTACAGAT**

Sequencing Successes*

T7 bacteriophage completed in 1983 39,937 bp, 59 coded proteins

Escherichia coli completed in 1998 4,639,221 bp, 4293 ORFs

Sacchoromyces cerevisae completed in 1996 12,069,252 bp, 5800 genes

Sequencing Successes*

Caenorhabditis elegans completed in 1998 95,078,296 bp, 19,099 genes

Drosophila melanogaster completed in 2000 116,117,226 bp, 13,601 genes

Homo sapiens completed in 2003 3,201,762,515 bp, ~23,000 genes

Genomes to Date

- **39 vertebrates (**human, mouse, rat, zebrafish, pufferfish, chicken, dog, chimp, cow, opossum**)**
- 35 plants (arabadopsis, rice, poplar, corn, grape)
- 41 insects (fruit fly, mosquito, honey bee, silkworm)
- 6 nematodes (C. elegans, C. briggsae)
- 1 sea squirt
- 32 parasites/protists (plasmodium, guillardia)
- 54 fungi (S. cerevisae, S. pombe, Aspergillis)
- 3500+ bacteria and archebacteria
- 6000+ viruses

http://genomesonline.org/

Tracking Genomes

000		List of	sequenced e	eukaryotic ger	omes – Wikiped	ia, the free encyclopedia	
🔺 🕨 🙆 🖶 🗛	A + 🕙 ht	tp://en.wikipe	edia.org/wiki	/List_of_sequer	nced_eukaryotic_g	enomes RSS C Qr Google	
Department o	ell Biology Logi	n- Depar of	Alberta Aud	liobaba Music S	earch Bioinform	ati the U of A! Coilgun Basics 2 Pathguide: tes	ource list >>>
Cite this page							
	Chromista						[edit]
	The Chromista a studied for evolu	are a group of ationary interes	protists that c st.	contains the alg	al phyla Heteroko	ntophyta, Haptophyta and Cryptophyta. Members of t	his group are mostly
	Organism 🖂	Type 🖂	Relevance	Genome size ⊯	Number of genes predicted M	Organization 🖂	Year of completion ⊮
	Guillardia theta	Cryptomonad	Model organism	0.551 Mb (nucleomorph genome only)	464 ^[1]	Canadian Institute of Advanced Research, Philipps- University Marburg and the University of British Columbia	2001 ^[1]
	Thalassiosira pseudonana Strain:CCMP 1335	Diatom		2.5 Mb	11,242 ^[2]	Joint Genome Institute and the University of Washington	2004 ^[2]
	Phaeodactylum tricomutum Strain: CCAP1055/1	Diatom		27.4 Mb	10,402	Joint Genome Institute	2008 [3]

Alveolata

[edit]

Alveolata are a group of protists which includes the Ciliophora, Apicomplexa and Dinoflagellata. Members of this group are of particular interest to science as the cause of serious human and livestock diseases.

Organism 🖂	Туре 🖂	Relevance M	Genome size ⊯	Number of genes predicted M	Organization 🖂	Year of completion ⊮
Babesia bovis	Parasitic protozoan	Cattle pathogen	8.2 Mb	3,671		2007 ^[4]
Cryptosporidium hominis Strain:TU502	Parasitic protozoan	Human pathogen	10.4 Mb	3,994 ^[5]	Virginia Commonwealth University	2004 ^[5]
Cryptosporidium parvum C- or genotype 2 isolate	Parasitic protozoan	Human pathogen	16.5 Mb	3,807 ^[6]	UCSF and University of Minnesota	2004 ^[6]
Paramecium tetraurelia	Ciliate	Model organism	72 Mb	39,642 ^[7]	Genoscope	2006 ^[7]

http://en.wikipedia.org/wiki/List_of_sequenced_eukaryotic_genomes

Prokaryotes

- Are a group of unicellular organisms whose cells lack a cell nucleus (karyon), or any other membrane-bound organelles
- Divided into bacteria and archaea

Prokaryotes*

- Simple gene structure
- Small genomes (0.5 to 10 million bp)
- No introns (uninterrupted)
- Genes are called Open Reading Frames of "ORFs" (include start & stop codon)
- High coding density (>90%)
- Some genes overlap (nested)
- Some genes are quite short (<60 bp)

Prokaryotic Gene Structure*

Gene Finding In Prokaryotes*

- Scan forward strand until a start codon is found
- Staying in same frame scan in groups of three until a stop codon is found
- If # of codons between start and end is greater than 50, identify as gene and go to last start codon and proceed with step 1
- If # codons between start and end is less than 50, go back to last start codon and go to step 1
- At end of chromosome, repeat process for reverse complement

ORF Finding Tools

- http://www.ncbi.nlm.nih.gov/gorf/ gorf.html
- http://www.bioinformatics.org/sms2/ orf_find.html
- https://www.dna20.com/toolbox/ ORFFinder.html
- http://www0.nih.go.jp/~jun/cgi-bin/ frameplot.pl

http://www.ncbi.nlm.nih.gov/gorf/gorf.html

Type in or Paste DNA Sequence

000		ORF Find	er		
S ORF Fin	der +				
● ► ③ www.ncbi	.nlm. nih.gov /gorf/gorf.html			☆ マ C 🚷 Google	۹ 🔒 💽 •
S NCBI	ORF Finder (Open	Reading Frame	Finder)		
PubMed	Entrez	BLAST	OMIM	Taxonomy	Structure
NCBI Tools for data mining GenBank sequence submission support and software FTP site download data and software	The ORF Finder (Open Readi selectable minimum size in a This tool identifies all open rea sequence can be saved in var The ORF Finder should be he Sequin sequence submission Enter GI or ACCESSION or sequence in FASTA for >sequence ATGCCTACCGATCGATCGATCTAGTTT TACCATCGAACTACTAGTAGTAGTAGT AGCTACGACTACTACTAGTAGTAGTAGT AGCTACGACTACTACTAGTAGTAGTAGT AGCTACGATCGATCGACTCACTACT CGTGATCGATGTAGTAGTAGTAGTAGT AGCTACGATCGATCGACTCACTACT CGTGATCGATGTAGTAGTAGTAGTAGT AGTATTAGTAGTAGTAGTAGTAGCGACGT AGTATTAGTAGTAGTAGTAGTAGCGACCTAGTCG AGTATTAGTAGTAGTAGTAGTAGCGACGT CGEnetic codes 1 Standard Comments and suggestions to Credits to: <u>Tatiana Tatusov</u> an	ng Frame Finder) is a gra user's sequence or in a se ading frames using the sta ious formats and searche lpful in preparing complete software. OrfFind OrfFind AGCCGAGCTACGACTATTCTATA ATCTAGATGATAGTAGTAGTAGTAGTAGT GATCGACTAGCTACGACTAGT CGTAGCGTAG	cigance already in indard or alternativ d against the seque and accurate second ciear	I which finds all open reading fi the database. e genetic codes. The deduced ence database using the WWW quence submissions. It is also p Press "Orf	rames of a I amino acid W BLAST server. packaged with the

000	ORF Finder	
S ORF Finder +		
www.ncbi.nlm.nih.gov/gorf/orfig.cgi		👌 - Google 🔍 🍙 🚺 -
ORF Finder (Open Read Finder)	ling Frame	
PubMed Entrez BLAST OMIM	Taxonomy Structure	
sequence		
View 3 Fasta protein ViewAll Redraw OrfFind </th <th>➤Press GenBank bu to Fasta protein fo</th> <th>tton to toggle rmat</th>	➤Press GenBank bu to Fasta protein fo	tton to toggle rmat
	Click on any of the to view any of the	6 marked "bars" 6 reading frames

ORF Finder		
Sort + Image: Sort www.ncbi.nlm.nih.gov/gorf/orfig.cgi	ু ⊽ C 🕄 Coogle	۹ 🖨 💽 •
ORF Finder (Open Reading Frame Finder)		
PubMed Entrez BLAST OMIM Taxonomy Structure		
sequence		
Program blastp + Database nr + BLAST with parameters Cognitor		
View 2 Fasta nucleotide 🗘 ViewAll Redraw OrfFind		
Length: 176 aa		
2 tggcgtagcgtgatcgatgctagttagccgagctacgactattctatacggactagcga W R S V I D A S L A E L R L F Y T D * R 62 tcgactagcatcgacactattattagatgatagtatctagtcgactactactactgag S T S I D T T I * M I V S S R L I S L K 122 tattagtattaatggcgtacgtagtcagtgttagcgagctagattatta Y * L M A * R D R C * F S R A T T I L 182 tacggactagcgatgatcaactactattagatgatactagtagtactagtact Y G L A I D * H R H Y Y L D D S I * S T 242 cattocctgaagtattagtaattatggcgtggcgggctaggtggtggtggtggtggtggtggtggtggtggtggtgg		
302 tacgactattotatacggactagcgatcgactagcatagca		× V

Using Other ORF Finders

- Go to the website
- Paste in some random DNA sequence or use the example sequence provided on the website
- Press the submit button
- Output will typically be displayed in a pop-up window showing the translation of the protein(s)

But...

- Prokaryotic genes are not always so simple to find
- When applied to whole genomes, simple ORF finding programs tend to overlook small genes and tend to overpredict the number of long genes
- Can we include other genome signals?
- Can we account for alternative start and stop signals?

Key Prokaryotic Gene Signals*

- Alternate start codons
- RNA polymerase promoter site (-10, -35 site or Pribnow box)
- Shine-Dalgarno sequence (Ribosome binding site-RBS)
- Stem-loop (rho-independent) terminators
- High GC content (CpG islands)

Alternate Start Codons (E. coli)

Class I	ATG	Met
	GTG	Val
	TTG	Leu
Class IIa	CTG	Met
	ATT	Val
	ΑΤΑ	Leu
	ACG	Thr

-10, -35 Site (RNA pol Promoter)

-36 -35 -34 -33 -32 -12 -11 -10 -9 -8 -7 T T G A C T A t A A T

RBS (Shine Dalgarno Seq)

-17 -16 -15 -14 -13 -12 .. -1 0 1 2 3 4 A G G A G G n A T G n C

Recruits bacterial ribosome to bind the mRNA strand

Terminator Stem-loops

A Better Gene Finder...

- Scan for ORFs using regular and alternate codons
- Among the ORFs found, check for RNA Pol promoter sites and RBS binding sites on 5' end – if found, keep the ORF
- Among the ORFs found look for stemloop features – if found, keep the ORF
- How best to find these extra signals or signal sites?

Simple Methods to Gene Site Identification*

A PSSM

- Use a consensus sequence (CNNTGA)
- Use a regular expression (C[TG]A*)
- Use a custom scoring matrix called a position specific scoring matrix (PSSM) built from multiple sequence alignments

Building a PSSM - Step 1*

Building a PSSM - Step 2*

Pseudocounts*

- Method to account for small sample size of multi-sequence alignment
- Gets around problem of having "0" score in PSSM or profile
- Defined by a correction factor "B" which reflects overall composition of sequences under consideration
- $B = \sqrt{N}$ or B = 0.1 which falls off with N where N = # sequences

Pseudocounts*

- Score(X_i) = $(q_x + p_x)/(N + B)$
- q = observed counts of residue X at pos. i
- p = pseudocounts of X = B*frequency(X)
- N = total number of sequences in MSA
- B = number of pseudocounts (assume \sqrt{N})

Score(A₁) =
$$(3 + \sqrt{5}(0.32))/(5 + \sqrt{5}) = 0.51$$

0.32 is the frequency of A's over the entire genome sequence

Including Pseudocounts -Step 2*

A .51 .38 .09 .09 .24 .09 .09 .79 .38 .24
C .19 .06 .06 .33 .06 .06 .06 .06 .19 .61
G .19 .06 .19 .06 .06 .75 .06 .06 .19 .06
pseudocounts
T .09 .51 .65 .51 .65 .09 .79 .09 .24 .09

Calculating Log-odds - Step 3*

A .51 .38 .09 .09 .24 .09 .09 .79 .38 .24
C .19 .06 .06 .33 .06 .06 .06 .06 .19 .61
G .19 .06 .19 .06 .06 .75 .06 .06 .19 .06
T .09 .51 .65 .51 .65 .09 .79 .09 .24 .09

PSSM with pseudocounts

-Log₁₀

A 0.2 0.4 1.1 1.1 0.7 1.1 1.1 0.1 0.4 0.7
C 0.7 1.2 1.2 0.4 1.2 1.2 1.2 1.2 0.7 0.1 Log-odds
G 0.7 1.2 0.7 1.2 1.2 0.1 1.2 1.2 0.7 1.2 PSSM
T 1.1 0.2 0.1 0.2 0.1 1.1 0.1 1.1 0.7 1.1

Scoring a Sequence - Step 4*

 A
 0.2
 0.4
 1.1
 1.1
 0.1
 0.4
 0.7

 C
 0.7
 1.2
 1.2
 0.4
 1.2
 1.2
 1.2
 0.7
 0.1
 Log-odds

 G
 0.7
 1.2
 0.7
 1.2
 1.2
 0.1
 1.2
 0.7
 0.1
 Log-odds

 T
 1.1
 0.2
 0.1
 1.2
 0.1
 1.2
 0.7
 1.2
 PSSM

ATTTAGTATC

Score = 2.5 (Lowest score wins)

 A
 0.2
 0.4
 1.1
 1.1
 0.7
 1.1
 1.1
 0.1
 0.4
 0.7

 C
 0.7
 1.2
 1.2
 0.4
 1.2
 1.2
 1.2
 1.2
 0.7
 0.1

 G
 0.7
 1.2
 0.7
 1.2
 1.2
 0.1
 1.2
 0.7
 0.1

 T
 1.1
 0.2
 0.1
 0.2
 0.1
 1.1
 0.1
 1.1
 0.7
 1.1

How to Use a PSSM

- Specific PSSMs can be made for finding RNA Pol promoter sites and RBS binding sites as well as many eukaryotic signal sites
- PSSMs can also be made for finding stem loop structures and other genetic features
- Sort of "custom" BLOSUM scoring matrices like those used in BLAST
- Very popular in the 1980s-1990s

More Sophisticated Methods

Hidden Markov Models

 Special kind of machine learning (artificial intelligence) method that is often used in pattern recognition problems such as speech recognition (Siri, Dragon Naturallyspeaking), handwriting recognition, gesture recognition, part-of-speech tagging, musical score following and bioinformatics

More Sophisticated Prokaryotic Gene Finding Methods

• GLIMMER 3.0

- http://cbcb.umd.edu/software/glimmer/
- Uses interpolated markov models (IMM)
- Requires training of sample genes
- Takes about 1 minute/genome

GeneMark.hmm

- http://opal.biology.gatech.edu/GeneMark/gmhmm2_prok.cgi
- Available as a web server
- Uses hidden markov models (HMM)

Glimmer 3.02 Website

O O Mozilla Firefox	
S http://www.ncbi/glimmer_3.cgi +	
Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system	۹ 🔒 💽 -
S NCBI Microbial Genomes	
HOME SEARCH SITE MAP Genome Project Genome Prokaryotic Projects Collaborators gMap ProtMap TaxPlot B	BLAST FTP Contact us
Microbial Genome Annotation Tools	Genomes Genome Projects Prokaryotic Projects Microbial Genomes Home Complete Genomes Draft Assemblies Deationed
GLIMMER is a system for finding genes in microbial DNA, especially the genomes of bacteria and archaea. GLIMMER (Gene Locator and Interpolated Markov ModelER) uses interpolated Markov models to identify coding regions.	Plasmids Entrez Genome
 Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER, Nucleic Acids Research 27:23 (1999), 4636-4641. Salzberg S, Delcher A, Kasif S, White O. Microbial gene identification using interpolated Markov models, Nucleic Acids Research 26:2 (1998), 544-548. 	Submit a Genome Sequin Submission Guide Register a Project Submit a Genome Submit Traces
Download GLIMMER from the Center for Bioinformatics and Computational Biology.	Tools Resources Sequencing Centers Collaborators Statistics
Upload your sequence from file:	
Or copy/paste your sequence FASTA here:	
	×

http://www.ncbi.nlm.nih.gov/genomes/MICROBES/glimmer_3.cgi

Glimmer Performance

Glimmer 2.0's Accuracy

Organism	Genes annotated	Annotated genes found	% found
H. influenzae	1738	1720	99.0
M. genitalium	483	480	99.4
M. jannaschii	1727	1721	99.7
H. pylori	1590	1550	97.5
E. coli	4269	4158	97.4
B. subtilis	4100	4030	98.3
A. fulgidis	2437	2404	98.6
B. burgdorferi	853	843	99.3
T. pallidum	1039	1014	97.6
T. maritima	1877	1854	98.8

Genemark.hmm

CeneMark.hmm f	or Prokaryotes	
SeneMark.hmm for Prokaryotes		
opal.biology.gatech.edu/GeneMark/gmhmm2_prok.cgi	☆ マ C Google	۹ 🔒 🖪
GeneMark.hmm for Prokaryotes (Version 2.8) (Reload this page) Reference: Lukashin A. and Borodovsky M., <u>GeneMark.hmm: new</u> 1107-1115. [Download PDF]	v solutions for gene finding, NAR, 1998, Vol. 26, N	o. 4, pp.
Prediction models have been pre-computed for a 265 completely sequ Gene predictions made for these genomes are available in the GeneMa	enced prokaryotic genomes from the NCBI RefSeq ark prokaryotic database.	database.
Input Sequence		
Title (optional):		
Sequence Text:0		
Sequence File upload: Browse		
Species: Escherichia_coli_K12 :		
☑Use RBS model, if available		
Output Options		
E-Mail Address (required for graphical output or sequences longer than	5000000 bp) o	

EasyGene (A Late Entry)

00			EasyGene 1.2 Server					
EasyGene 1.2 Server	+							
Www.cbs.dtu.dk/services/E	asyGene/			5	🔻 ୯ 🌒 🚷 🖓 🗸 Shine Dalga	arno PSSM	۹) 🔒	
CENTERFO RBIOLOGI CALSEQU ENCEANA	NEWS CONTACT	RESEARCH GROUPS ABOUT	CBS PREDICTION SERVERS INTERNAL	CBS DATA SETS CBS	PUBLICATIONS	EDUCATION OTHER		CENTER FOR
LYSIS CBS		CBS		BIOINFORMATICS TOOLS	COURSES	BIOINFORMATI LINKS	cs	BIO
<u>CBS</u> >>> <u>CBS Prediction Servers</u> >> East	syGene						B	2 6
EasyGene 1.2b Ser	VET s a list of predicted genes g	iven a sequence of proka	aryotic DNA. The current ve	ersion contains models	for <u>138 different organisms</u> . E	ach prediction is attr	ibuted wit	QUENCE ANALYSI
and to select the organism model t	to use (see instructions).	ust a non-coding open re	aoing frame rather than a	real gene. All that is re	quired of you as a user is to	supply write query s	equence(s	3) 16 = =
The pre-calculated EasyGene 1.2	predictions for the complete	genomes of the 138 orga	nisms can be downloaded	from the EasyGene site	at BINF at the University of	Copenhagen.		ECHN
This version replaces EasyGene 1	.0. View the version history	of this server.						ICAL
Instruct	<u>tions</u>		Output format		Article ab	stracts		UNI
Paste a single sequence or severa Submit a file in FASTA format direct	al sequences in <u>FASTA</u> form ctly from your local disk:	at into the field below:	Browse)					SITY OF DENMARK DTU
Organism Aeropyrum pernix		¢ Vi	iew the <u>organism list</u> .					
R-value cutoff 2	Predict suboptimal gen	e starts						
Restrictions: At most 10,000,000 nucleotides pe	er submission in at most 50 s	sequences.						
Confidentiality: The sequences are kept confident	ial and will be deleted after p	processing.						
CITATIONS								-

http://www.cbs.dtu.dk/services/EasyGene/

EasyGene Output

0.0				Lu	systeme int output	Tormat						
EasyGene 1.2 Ou	tput format	+										
) 🛞 www.cbs. dtu.	dk /services/Ea	asyGene/or	utput.php)			☆ < (3 🚷 🖌 Go	ogle	۹ (1
DESCRIPTION												NUMBER OF
The set of												E O I
The output conform	s to the GFF for	rmat. For ea	ach input s	equence tr	ne server prints a list o	t predicted (genes, one j	per line. The co	lumns are:			ī
 seqname: i model: organization 	input sequence anism model co	name; de (also in i	plain text i	n the table	head):							THE NAME
 feature: pre 	edicted feature,	'CDS' or 'Cl	DSsub' (al	ternative tr	anslation start);							2
 start and en score: R-va 	alue, indicating l	how likely th	ice; he fragmer	nt is to be ju	ust a non-coding open	reading fram	me rather th	an a real gene;				Dist.
strand: '+' (or '-';		Ţ.	-								VIL.N.
 odds: log o 	dds score.	л,										2011
					outoff (the default is 9)	are reporte	d.					ţ
Only the predictions	with R-values	lower than t	the selecte	d H-value	cuton (the delaut is Z)	are reporte						ļ
Only the predictions The example below	with R-values I	lower than t wGene 1.2	output for	the sequer	nce taken from the Ge	nBank entry	AB010576	. containing Ba	acillus subtilis C	omX. ComQ	and	-
Only the predictions The example below DegQ genes. All th	with R-values shows the Eas e three genes a	lower than t syGene 1.2 are predicted	output for d as annot	the sequer	nce taken from the Ge database (shown in)	nBank entry green), with	AB010576 high confid	, containing Ba ence, although	a <i>cillus subtilis</i> C an alternative 1	omX, ComQ translation sta	and rt is	
Only the predictions The example below DegQ genes. All th preferred for comQ	s with R-values shows the Eas e three genes a (shown in oran)	lower than t syGene 1.2 are predicted ge). Two ad	the selecte output for d as annot dditional ge	the sequer tated in the enes not an	nce taken from the Ge database (shown in notated in the GenBa	nBank entry green), with nk entry are	AB010576 high confid also predic	, containing Ba ence, although ted.	a <i>cillus subtilis</i> C an alternative f	translation sta	and rt is	THE PARTY OF TAXABLE PARTY OF TAXABLE PARTY.
Only the predictions The example below DegQ genes. All th preferred for comQ	s with R-values i shows the Eas e three genes a (shown in orang	lower than t syGene 1.2 are predicted ge). Two ad	output for d as annot ditional ge	the sequer tated in the enes not an	nce taken from the Ge adatabase (shown in notated in the GenBa	nBank entry green), with nk entry are	AB010576 high confid also predict	, containing Ba ence, although ted.	acillus subtilis C an alternative t	comX, ComQ translation sta	and rt is	
Only the predictions The example below DegQ genes. All th preferred for comQ	s with R-values I r shows the Eas e three genes a (shown in oran)	lower than t syGene 1.2 are predicted ge). Two ad	the selecte output for d as annot dditional ge	the sequer tated in the enes not an	tatabase (shown in inotated in the GenBal	nBank entry green), with nk entry are	AB010576 high confid also predict	, containing <i>Ba</i> ence, although ted.	acillus subtilis C an alternative f	comX, ComQ translation sta	and rt is	and an an an and a set of the
Only the predictions The example below DegQ genes. All th preferred for comQ	s with R-values I s shows the Eas e three genes a (shown in oran)	lower than t syGene 1.2 o are predicted ge). Two ad	ine selecte output for d as annot Iditional ge	d R-value the sequer tated in the enes not an	nce taken from the Ge database (shown in inotated in the GenBa	nBank entry green), with nk entry are	AB010576 high confid also predic	, containing <i>Ba</i> ence, although led.	acillus subtilis C an alternative t	comX, ComQ translation sta	and rt is	
Only the predictions The example below DegQ genes. All th preferred for comQ EXAMPLE OUT	s with R-values l s shows the Eas e three genes a (shown in oran) PUT	lower than t syGene 1.2 are predicter ge). Two ad	the selecte output for d as annot ditional ge	d R-value the sequer tated in the enes not an	nce taken from the Ge database (shown in notated in the GenBa	nBank entry green), with nk entry are	/ AB010576 high confid also predict	, containing <i>Ba</i> ence, although led.	acillus subtilis C an alternative t	comX, ComQ translation sta	and rt is	and the second sec
Only the predictions The example below DegQ genes. All th preferred for comQ EXAMPLE OUTI ##gff-version ##source-vers: ##date 2007-00	s with R-values l shows the Eas e three genes a (shown in oran) PUT 2 ion easygen 8-15	lower than t syGene 1.2 i are predicted ge). Two ad	the selecte output for d as annot dditional ge	d R-value the sequer tated in the mes not an	nce taken from the Ge atabase (shown in notated in the GenBa	nBank entry green), with nk entry are	/ AB010576 high confid also predict	, containing <i>Ba</i> ence, although led.	acillus subtilis C an alternative t	comX, ComQ translation sta	and rt is	
Only the predictions The example below DegQ genes. All th preferred for comQ EXAMPLE OUT ##gff-version ##source-vers: ##date 2007-03 ##Type DNA	s with R-values l shows the Eas e three genes a (shown in oran) PUT 2 ion easygen 8-15	lower than t syGene 1.2 are predicted ge). Two ad	the selecte output for d as annot Iditional ge	d H-value the sequer tated in the thes not an	tation (the default is 2) nce taken from the Ge adtabase (shown in inotated in the GenBa	nBank entry green), with nk entry are	AB010576 high confid also predici	, containing <i>Ba</i> ence, although led.	acillus subtilis C an alternative t	comX, ComQ translation sta	and rt is	
Only the predictions The example below DegQ genes. All th preferred for comQ EXAMPLE OUT ##gff-version ##source-vers: ##date 2007-00 ##Type DNA # model: BS00 # seqname	s with R-values I r shows the Eas e three genes a (shown in oran) PUT 2 ion easygen 8-15 3 Bacillus model	lower than t ayGene 1.2 are predicted ge). Two ad ne-1.2b subtiliss feature	ne selecte output for d as annot iditional ge start	end	score	nBank entry green), with nk entry are	AB010576 high confid also predict	, containing <i>Ba</i> ence, although led.	acillus subtilis C an alternative t odds	comX, ComQ translation sta	and rt is	
Only the predictions The example below DegQ genes. All th preferred for comQ EXAMPLE OUT ##gff-version ##source-vers: ##date 2007-05 ##Type DNA # model: BS0 # seqname #	s with R-values I shows the Eas e three genes a (shown in oran) PUT 2 ion easygen 8-15 3 Bacillus model	lower than t syGene 1.2 i are predicted ge). Two ad ne-1.2b subtilis feature	s start	end	score	nBank entry green), with nk entry are	AB010576 high confid also predict	, containing Ba ence, although led. startc	odds	comX, ComQ translation sta	and rt is	
Only the predictions The example below DegQ genes. All th preferred for comQ EXAMPLE OUTI ##gff-version ##gff-version ##date 2007-05 ##Type DNA # model: BS0 # seqname #	s with R-values l s shows the Eas e three genes a (shown in oran) PUT 2 ion easygen 8-15 3 Bacillus model 	lower than t syGene 1.2 i are predicted ge). Two ad ne-1.2b subtilis feature CDS CDSsub	s start 67 55	end 324 324	score 0.0271875 0.031955	nBank entry green), with nk entry are +/- +	AB010576 high confid also predict ? ?	, containing <i>Ba</i> ence, although led. startc #ATG #ATG	odds 20.1861 20.1731	comX, ComQ translation sta	and rt is	
Only the predictions The example below DegQ genes. All th preferred for comQ EXAMPLE OUTI ##gff-version ##gff-version ##date 2007-0; ##tType DNA # model: BS0; # seqname #	s with R-values l s shows the Eas e three genes a (shown in oran) PUT 2 ion easygen 8-15 3 Bacillus model BS03 BS03 BS03	lower than t syGene 1.2 i are predicted ge). Two ad subtilis feature CDS CDSsub CDS	s start 67 55 1129	end 324 324 1269	score 0.0271875 0.031955 0.0190622	+/- ++	President of the second	, containing <i>Ba</i> ence, although led. startc #ATG #ATG #ATG	odds 20.1861 20.1731 15.7102	comX, ComQ translation sta	and rt is	
Only the predictions The example below DegQ genes. All th preferred for comQ EXAMPLE OUT ##gff-version ##gff-version ##date 2007-05 ##Type DNA # model: BS0 # seqname #	PUT 2 ion easygen 8-15 3 Bacillus model BS03 BS03 BS03	lower than t ayGene 1.2 of are predicted ge). Two ad subtilis feature CDS CDS CDS CDS	s start 67 1370	end 324 324 2314	score 0.0271875 0.031955 0.0190622 2.13273e-12	+/- ++ + +	P AB010576 high confid also predict ? ? 0 0 0 0	startc #ATG #ATG #ATG #ATG	odds 20.1861 20.1731 15.7102 74.7815	comX, ComQ translation sta	and rt is	
Only the predictions The example below DegQ genes. All th preferred for comQ EXAMPLE OUT ##gff-version ##source-vers: ##date 2007-05 ##Type DNA # model: BS0: # seqname #	s with R-values l s shows the Eas e three genes a (shown in oran) PUT 2 ion easygen 8-15 3 Bacillus model BS03 BS03 BS03 BS03 BS03 BS03	lower than t ayGene 1.2 c are predicted ge). Two ad subtilis feature CDS CDS CDS CDS CDS Sub	s start 67 55 1129 1370 1454	end 324 324 2314 2314	score 0.0271875 0.031955 0.030955 0.0190622 1.92405e-12	+/- + + + +	P AB010576 high confid also predict ? ? 0 0 0 0 0 0	startc #ATG #ATG #ATG #ATG #ATG #ATG	odds 20.1861 20.1731 15.7102 74.7815 74.6356	comX, ComQ translation sta	and rt is	
Only the predictions The example below DegQ genes. All th preferred for comQ EXAMPLE OUT ##gff-version ##source-vers: ##date 2007-01 # model: BS0 # seqname #	s with R-values I s shows the Eas e three genes a (shown in oran) PUT 2 ion easygen 8-15 3 Bacillus model BS03 BS03 BS03 BS03 BS03 BS03 BS03 BS03	lower than t ayGene 1.2 c are predicted ge). Two ad subtilis feature CDS CDS CDS CDS CDS CDS CDS CDS	s start 67 55 1129 1370 1454 2327	end 324 324 2314 2491 269	score 0.0271875 0.031955 0.0190622 2.13273e-12 1.92405e-12 0.0167943 1.42511	+/- + + + + + + + + + + +	P AB010576 high confid also predict ? ? 0 0 0 0 0 0 0	, containing Ba ence, although led. startc #ATG #ATG #ATG #ATG #ATG #ATG #ATG	odds 20.1861 20.1815 74.6356 17.2951	comX, ComQ translation sta	and rt is	

٧

Gene Finding with GLIMMER & Company

- Go to your preferred website
- Paste in the DNA sequence of your favorite PROKARYOTIC genome (this won't work for eukaryotic genomes and it won't necessarily work for viral genomes, it may work for phage genomes)
- Press the submit button
- Output will typically be presented in a new screen or emailed to you

Bottom Line...*

- Gene finding in prokaryotes is now a "solved" problem
- Accuracy of the best methods approaches 99%
- Gene predictions should always be compared against a BLAST search to ensure accuracy and to catch possible sequencing errors
- Homework: Try testing some of the web servers I have mentioned today