How Computing Science Saved The Human Genome Project

david.wishart@ualberta.ca 3-41 Athabasca Hall Sept. 9, 2013

The Human Genome Project

Human Genome Project

harmaceuticals Agriculture

Forensics

Anthropology

Industrial Processes

Biofuels

Bioremediation

YGA 98-145

HGP Announcement June 26, 2000***

Most Significant Scientific Accomplishments of the Last 50 Years

June 26, 2000

July 20, 1969

The Human Genome Project

- First efforts started in October 1990 Celera vs. NIH
- Two competing efforts (private vs. public)
- First Draft completed on June 26, 2000
- "Finished" on May 18, 2006 (\$3.8 billion)
- Used hundreds of machines and 1000s of scientists to sequence a total of 3,283,984,159 bases on 24 chromosomes

DNA the molecule of life **Trillions of cells** Each cell: 46 human chromosomes 2 m of DNA 3 billion DNA DNA subunits (the bases: A, T, C, G) 21,000 genes code for proteins that perform all life functions

chromosomes gene

protein

metabolite

cell

DNA Structure & Bases

DNA Sequencing – The Key to the Human Genome Project

Shotgun Sequencing

Sequence

Multiplexed CE with Fluorescent detection

ABI 3700

96x700 bases

Shotgun Sequencing

Sequence Chromatogram Send to Computer

Assembled Sequence

HGP - Challenges

- Reading the DNA sequencer chromatograms (base calling)
- Putting millions of short "reads" together to assemble the genome (assembly)
- Identifying the genes from the DNA sequence (gene finding)
- Figuring out what each gene does

HGP - Challenges

- Reading the DNA sequencer chromatograms 35 billion base calls
- Putting millions of short "reads" together to assemble the genome piecing 35 million reads together
- Identifying the genes from the DNA sequence Finding 1% signal with >95% accuracy
- Figuring out what each gene does 20,000x100,000,000 comparisons

Biting Off Too Much

Computational Challenges

- Reading the DNA sequencer chromatograms 35 billion base calls
- Putting millions of short "reads" together to assemble the genome piecing 35 million reads together
- Identifying the genes from the DNA sequence Finding 1% signal with >95% accuracy
- Figuring out what each gene does 20,000x100,000,000 comparisons

Principles of DNA Sequencing

Principles of DNA Sequencing

Capillary Electrophoresis

Separation by Electro-osmotic Flow

Multiplexed CE with Fluorescent detection

ABI 3700

96x700 bases

Base Calling

- Image processing
- Peak detection
- De-noising

- Peak deconvolution
- Signal analysis
- Reliability assessment

99.99% accurate for 35 billion base calls

Base Calling With Phred*

Base Calling - Result

ATGTCACTGCAATTGATGTATAAATGGA GTTAGACACTAGATCACATAGGAGTTTA CGCTAAATGACAGATAGACA GGGATATCTATAGATAGACACATAGCTCTCT AATGACGACTAGCTGAGTAGATT TTACGATCGATCGATATTACCGCGCGAAATAT AGCTATGATGTCGAT

Shotgun Sequencing

Sequence Chromatogram Send to Computer

Assembled Sequence

Computational Challenges

- Reading the DNA sequencer chromatograms 35 billion base calls
- Putting millions of short "reads" together to assemble the genome piecing 35 million reads together
- Identifying the genes from the DNA sequence Finding 1% signal with >95% accuracy
- Figuring out what each gene does 20,000x100,000,000 comparisons

Sequence Assembly

ATGGCATTGCAA TGGCATTGCAATTTG AGATGGTATTG GATGGCATTGCAA GCATTGCAATTTGAC ATGGCATTGCAATTT AGATGGTATTGCAATTTG

Consensus

Reads

AGATGGCATTGCAATTTGAC

Sequence Assembly (An Analogy)

The DARPA Shredder Challenge

	D	yr	1a	mi	С	Pr	0	gra	am	n	nin	g
		G	A	A	Т	Т	С	A	G	Т	Т	A
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	1	1	1	1	1	1	1	1	1	1	1
G	0	1	1	1	1	1	1	1	2	2	2	2
А	0	1	2	2	2	2	2	2	2	2	2	3
т	0	1	2	2	3	3	3	3	3	3	3	3
С	0	1	2	2	3	3	4	4	4	4	4	4
G	0	1	2	2	3	3	4	4	5	5	5	5
А	0	1	2	3	3	3	4	5	5	5	5	6

GAATTCAGTTA

GGATCGA

GAATTCAGTTA

GGAT-C-G--A

De Bruijn Graphs & Assembly

A Real Assembler

(♥♥(X Contig Edit	tor: -1	SRR03025	7.787415/2									2
Cons 2	n Qual	0 🔹	💷 Insert	Edit Modes >	> 🗆 Cutoffs	Undo Next	t Search	Commands >:	Settings >>			Quit Help >	>
<<	< > >	>>		1									-
	 」		0 47	5400	475410	475420	0 4	75430	475440	475450	475460	47547	$\overline{\mathbf{n}}$
+17	NC 01296	7	aaaggcg	agcacaa	geceecaa	caatget	ggtgat	aagc <mark>*</mark> ggg	gtggcgtga	tgcattccgt	ctccttttcc	tggtggt	
+79110	_cer_sxa	62	aaaggcg	agcacaa	ggccgccaa	caatggt	ggtgat	aagc <mark>*</mark> ggg	gtggcgtga	tgcattccgt	ctccttttcc	tggtggt	
+79111	_cer_sxa	_2_	aaaggcg	agcacaa	ggccgccaa	caatggt	ggtgat	aagc <mark>*</mark> ggg	gtggcgtga	tgcattccgt	ctccttttcc	tggtggt	
+79112	_cer_sxa	_125_	aaaggcg	agcacaa	ggccgccaa	caatggt	ggtgat	aa	0 00 0 0	0 0		00 00	
+79113	_cer_sxa	_262_	aaaggcg	agcacaa	ggccgccaa	caatggt	ggtgat						
+98100	SRR03025	7.1749		CACAA	ĞĞCCĞCCAA	CAATĞĞTÖ	ĞĞTĞAT	'AAGC <mark>G</mark> GGG	G				
-98101	SRR03025	7.2467		CAA	GGCCGCCAA	CAATGGT	GGTGAT	'AAGC <mark>G</mark> GGG	GTG				
+98102	SRR03025	7.7650		AA	GGCCGCCAA	CAATGGT	GGTGAT	'AAGC <mark>G</mark> GGG	GTGG				
-98103	SRR03025	7.7695		A	GGCCGCCAA	CAATGGT	GGTGAT	'AAGC <mark>G</mark> GGG	GTGGC				
-98104	SRR03025	7.2488		A	GGCCGCCAA	CAATGGT	GGTGAT	'AAGC <mark>G</mark> GGG	GTGGC				
+98105	SRR03025	7.2806		A	GCCGCCAA	CAATGGT	GGTGAT	'AAGC <mark>G</mark> GGG	G <mark>G</mark> GG				
-98106	SRR03025	7.1881		l	GCCGCCAA	CAATGGT	GGTGAT	AAGC <mark>G</mark> GGG	GTGGCG				
+98107	SRR03025	7.1895		(GCCGCCAA	CAATGGT	GGTGAT	AAGC <mark>G</mark> GGG	GTGGCG				
-98108	SRR03025	7.2251			GCCGCCAA	CAATGGT	GGTGAT	AAGC <mark>G</mark> GGG	GTGGCGT				
+98109	SRR03025	7.3596			CGCCAA	CAATGGT	GGTGAT	AAGC <mark>G</mark> GGG	G <mark>G</mark> GG	_			
-98110	SRR03025	7.3066			GCCAA	CAAIGGIO	GGIGAI	AAGC <mark>G</mark> GGG	GTGGC <mark>G</mark> TGA	ηT			
+98111	SRR03025	7.21/0			CCAA	CAAIGGIO	GGIGAI	AAGC <mark>G</mark> GGG	G <mark>G</mark> GG				
-98112	SRR03025	7.3282			CCAA	CAAIGGIO	GGIGAI	AAGC <mark>G</mark> GGG	GIGGCGIGA	AIG			
-98113	SRR03025	7.4159			CCAA	CAAIGGIO	GGIGAI	AAGC <mark>G</mark> GGG	GIGGCGIGA	ATG			
+98114	SRR03025	7.1502			CAA	CAAIGGIO	GGIGAI	AAGC <mark>G</mark> GGG	GIGGCGIGA	TGC			
-98115	SRR03025	7.2403			CAA	CAAIGGIU	GGIGAI	AAGCUGGG	GIGGUGIGA				
-98116	SRR03025	7.2498			CAA	CAAIGGIU	GGIGAI	AAGCUGGG	GIGGUGIGA	IIGC			
+9811/	SRR03025	7.2410			Ĥ		GGIGAI	AAGCUGGG		TOOAT			
-98118	SRR03025	7.3463			A	CAAIGGIU	GGIGAI	AAGCUGGG		IIGCAI			
+98119	SRR03025	7.3446				CAAIGGIU	GGIGAI	AAGCUGGG	6 <mark>6</mark> 66				
-98120	SRR03025	7.1509				AATCOT	UUIUAI	AAGC	UIUUUUIUA CTOCOCTO				
+98121	SKR03025	7.24/8				HAIGGI	uu lufil corcor	HHULUUUU	GIGGLGIGH	II TCCATTCC			
-98122		7.1708	~~~~~	ACCACAA			GETCAT	HHULUUUU	GIGGCCCCCCC		eteetttee	TOOTOOT	
	CUNSENSU	5 -**-	нннаась	насненн	JULLULLAH	СННІЦЦІІ	uuluHI	հերընթո		паснітсьві			7
Tag type:Fge	n Direction:+	Comment	:"/gene=yba	L :: Aocus ta	g=ECB 00429								

The Result

>P12345 Human chromosome1 GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA **TTACAGATTACAGATTACAGATTACAGATTACAGAT** TACAGATTAGAGATTACAGATTACAGATTACAGATT ACAGATTACAGATTACAGATTACAGATTACAGATTA CAGATTACAGATTACAGATTACAGATTACAGATTAC AGATTACAGATTACAGATTACAGATTACAGATTACA GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA **TTACAGATTACAGATTACAGATTACAGATTACAGAT TTGGC.... And on for 150,000,000 bases**

How Perl Saved the Human Genome Project

Lincoln D. Stein

Perl remains the savior of the genome project now more than ever. Just a few weeks ago I found myself sitting in an auditorium listening to Jim Mullikin of the Wellcome Trust Sanger Institute describe how he had solved a problem that was once thought insurmountable: to assemble an entire genome (the mouse, in this case) in a single shot, without the tedious experimental mapping and subcloning that was previously thought to be critical to make the problem soluble. His genome assembly software, named Phusion, is a pipeline of Perl scripts wrapped around a nugget of high-performance C code. As Jim put it, "Perl and 70 gigabytes of main memory is all you need!"

February, 2002

Computational Challenges

- Reading the DNA sequencer chromatograms 35 billion base calls
- Putting millions of short "reads" together to assemble the genome piecing 35 million reads together
- Identifying the genes from the DNA sequence Finding 1% signal with >95% accuracy
- Figuring out what each gene does 20,000x100,000,000 comparisons

Genome Sequence

>P12345 Human chromosome1 GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA **TTACAGATTACAGATTACAGATTACAGATTACAGAT** TACAGATTAGAGATTACAGATTACAGATTACAGATT ACAGATTACAGATTACAGATTACAGATTACAGATTA CAGATTACAGATTACAGATTACAGATTACAGATTAC AGATTACAGATTACAGATTACAGATTACAGATTACA GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA **TTACAGATTACAGATTACAGATTACAGATTACAGAT TTGGC.... And on for 150,000,000 bases**

Genome Sequence

GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA **TTACAGATTACAGATTACAGATTACAGATTACAGAT TACAGATTAGAGATTACAGATTACAGATTACAGATT** ACAGATTACAGATTACAGATTACAGATTA CAGATTACAGATTACAGATTACAGATTACAGATTAC AGATTACAGATTACAGATTACAGATTACAGATTACA GATTACAGATTACAGATTACAGATTACAGATTACAG **ATTACAGATTACAGATTACAGATTACAGATTACAGA** ATTACAGATTACAGATTACAATTAGAGATTACAGAT TACAGATTACAGATTACAGATTACAGATTACAGATT ACCAGATTACAGA

Problem Similar to Speech or Text Recognition

Hidden Markov Models

HMM for Gene Finding

Genscan – The Ultimate Gene Finder

000		New GENSCAN We	b Server at MIT			
▲ ► 益 ➡ A A +	🕙 http://genes.mit.edu/GE	ENSCAN.html			C Q Google	
Department oell Biology	Login- Depar of Alberta	Audiobaba Music Search	Bioinformati the U of A!	Coilgun Basics 2	Pathguide: tesource list	>>
_						ſ
2						
For information about Ger	iscan, click here					
This server provides access to the r	moram Genscan for predi	icting the locations and e	exon-intron structures of g	enes in genomic	sequences from a variety of	h
organisms.	logram Gensean for pred	icing the focations and c	2011-Indon Suddules of g	enes in genomie	sequences nom a variety of	
This server can accept sequences u	p to 1 million base pairs (1	l Mbp) in length. If you	have trouble with the wet	server or if you	have a large number of sequen	ices to
process, request a local copy of the support file upload or multipart for	program (see instructions	at the bottom of this pag	ge) or use the <u>GENSCAN</u>	email server. If	your browser (e.g., Lynx) does	not
support no uprout or maniput ton	110, 400 410 <u>0.400 (0.400)</u> .					
Organism: Vertebrate 🛟 Subopt	imal exon cutoff (optional)): 1.00 🛟				
Sequence name (optional):						
Print options: Predicted peptides only						
Upload your DNA sequence file (o	one-letter code, upper or lo	ower case, spaces/numbe	ers ignored): Choose File	no file selected		4
Or paste your DNA sequence here	(one-letter code, upper or	lower case, spaces/num	bers ignored):			
To have the results mailed to you, o	enter your email address he	ere (optional):				
Run GENSCAN Clear Input						
Back to the top						

How Well Do They Do?

Duagangang	# of	Nucleotide accuracy				Exon accuracy								
r rograms	seq	Sn	Sp	AC	CC	ESn	ESp	(ESn+ESp)/2	ME	WE	PCa	РСр	OL	
FGENES	195(5)	0.86	0.88	0.84	0.83	0.67	0.67	0.69	0.12	0.09	0.20	0.17	0.02	
GeneMark	195(0)	0.87	0.89	0.84	0.83	0.53	0.54	0.54	0.13	0.11	0.29	0.27	0.09	
Genie	195(15)	0.91	0.90	<mark>0.89</mark>	0.88	0.71	0.70	0.71	0.19	0.11	0.15	0.15	0.02	
Genscan	195(3)	0.95	0.90	0.91	0.91	0.70	0.70	0.71	<mark>0.08</mark>	<mark>0.09</mark>	0.21	0.19	0.02	
HMMgene	195(5)	0.93	0.93	0.91	0.91	0.76	0.77	0.76	0.12	0.07	0.14	0.14	0.02	
Morgan	127(0)	0.75	0.74	0.70	0.69	0.46	0.41	0.43	0.20	0.28	0.28	0.25	0.07	
MZEF	119(8)	0.70	0.7 <mark>3</mark>	<mark>0.68</mark>	0.66	0.58	0.59	0.59	<mark>0.32</mark>	<mark>0.23</mark>	0.08	0.16	0.01	

"Evaluation of gene finding programs" S. Rogic, A. K. Mackworth and B. F. F. Ouellette. Genome Research, 11: 817-832 (2001).

Sensitivity Measure of the % of false negative results (sn = 0.996 means 0.4% false negatives)

Specificity Measure of the % of false positive results

Precision Measure of the % positive results

Correlation Combined measure of sensitivity and specificity

Sensitivity or Recall Sn=TP/(TP + FN)

Specificity

Sp=TN/(TN+FP)

Precision

Pr=TP/(TP+FP)

Correlation

CC=(TP*TN-FP*FN)/[(TP+FP)(TN+FN)(TP+FN)(TN+FP)]^{0.5} This is a better way of evaluating

Computational Challenges

- Reading the DNA sequencer chromatograms 35 billion base calls
- Putting millions of short "reads" together to assemble the genome piecing 35 million reads together
- Identifying the genes from the DNA sequence Finding 1% signal with >95% accuracy
- Figuring out what each gene does 20,000x100,000,000 comparisons

A List of Genes

>P12346 Gene 1 ATGTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA TTACAGATTACAGATTACAGATTACAGAT

>P12347 Gene 2 ATGAGATTAGAGATTACAGATTACAGATTACAGATT ACAGATTACAGATTACAGATTACAGATTACAGATTA CAGATTACAGATTACAGATTACAGATTACAGATT

>P12348 Gene 3 ATGTTACAGATTACAGATTACAGATTACAGATTACA GATTACAGATTACAGATTACAGATTACA...

What Biologists Want

>P12346 Gene 1

Human hemoglobin alpha chain, transports oxygen, located on chromosome 14 p.12.1

>P12347 Gene 2 *Human super oxide disumutase, removes oxygen radicals and prevents rapid aging, located on chromosome 14 p.12.21*

>P12348 Gene 3

Human hemoglobin beta chain, transports oxygen, located on chromosome 14 p.12.23

What Biologists Want

- Trick is to use sequence similarity or sequence matching and prior knowledge
- By 2005 millions of genes had already been characterized from other organisms
- Find the human genes that are similar to the already-characterized genes and assume they are pretty much the same
- Annotation by sequence homology
- Key is to do rapid sequence comparisons

Definitions by Similarity

Query: Bananas

Database

- Banana a yellow curved fruit
- Bandana a colorful kerchief
- Banal boring and obvious
- Banyan a fig that starts as an epiphyte
- Ananas genus name for pineapple

Dynamic Programming – Too Slow

		G	A	A	Т	Т	С	А	G	Т	Т	А
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	1	1	1	1	1	1	1	1	1	1	1
G	0	1	1	1	1	1	1	1	2	2	2	2
A	0	1	2	2	2	2	2	2	2	2	2	3
т	0	1	2	2	3	3	3	3	3	3	3	3
С	0	1	2	2	3	3	4	4	4	4	4	4
G	0	1	2	2	3	3	4	4	5	5	5	5
А	0	1	2	3	3	3	4	5	5	5	5	6

GAATTCAGTTA

GGATCGA

The BLAST Search Algorithm

1000-10,000X faster than DP methods

The BLAST Server

000	Nucleotide BLAST: Search nucleotide databases using a nucleotide query	
▲ ► ▲ A + Shttp://	//blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastS	earch 🖒 🔍 BLAST 📀
& CD III Mass Spectrouantitation Bio	markers —blic Portal SOLiD Softwaxy > Home Tutorial:BasenTutorials OpenHelix: Lee tutoria	lls Tutorial:IntpenTutorials
BLAST [®] Home Recent Results Saved St	Basic Local Alignment Search Tool rategies Help	My NCBI 2 [Sign In] [Register]
NCBI/ BLAST/ blastn suite	Standard Nucleotide BLAST	
blastn blastp blastx tblastn tblastx		
Enter Query Sequence	BLASTN programs search nucleotide databases using a nucleotide query. more	Reset page Bookmark
Enter accession number(s) gi(s) or FAS		
>123		
AGATTCGATGCTCTACTAATTCTCTTCT		
	То	
	<i>h</i>	
Or, upload file Choose File no file s	selected	
Align two or more sequences	e for your BLAST search 🥑	
Choose Search Set		
Database OHuman genomic +	+ transcript () Mouse genomic + transcript () Others (nr etc.):	
Organism	n (nr/nt)	
Optional Enter organism name of	r idcompletions will be suggested Exclude +	
Enter organism comm	ion name, binomial, or tax id. Only 20 top taxa will be shown. 🔞	
Exclude Optional	Uncultured/environmental sample sequences	
Entrez Query		
Enter an Entrez query	/ to limit search 😡	
<u> </u>		

Computational Challenges

- Reading the DNA sequencer chromatograms Solved with Phred
- Putting millions of short "reads" together to assemble the genome Solved with Phusion
- Identifying the genes from the DNA sequence Solved with Genscan
- Figuring out what each gene does Solved with BLAST

Who Were the Real Heroes of The Human Genome Project?

Questions?

david.wishart@ualberta.ca 3-41 Athabasca Hall