## 3D Structure

## Visualizing, Comparing, Classifying



## David Wishart

Athabasca 3-41
david.wishart@ualberta.ca

## Outline \& Objectives*

- Visualization Programs
- Vectors \& Matrices
- Difference Distance Matrices
- Molecular Superposition
- Measuring Superposition
- Classifying 3D Structures


## PDB Viewers



## Jmol*

- Java-based program
- Open source applet and application
- Compatible with Linux, MacOS, Windows
- Menus access by clicking on Jmol icon on lower right corner of applet
- Works with all major web browsers
- Internet Explorer (Win32)
- Mozilla/Firefox (Win32, OSX, *nix)
- Safari (Mac OS X) and Opera 7.5.4


## WebMol*



## WebMol*

- Both a Java Applet and a downloadable application
- Offers many tools including distance, angle, dihedral angle measurements, detection of steric conflicts, interactive Ramachandran plot, diff. distance plot
- Compatible with most Java (1.3+) enabled browsers including:
- Internet Explorer
- Safari on Mac OS
- Mozilla 1.6/Firefox on Linux (Redhat 8.0)


## PDB SimpleViewer



Requires Java WebStart (~30 sec install)

## Chime*



## Chime*

- http://www.umass.edu/microbio/chime/ neccsoft.htm\#download_install
- Among first PDB viewing programs with limited manipulation capacity
- Uses Rasmol for its back end source
- View both large and small molecules
- Browser Plug-in (Like PDF reader)
- Interesting from historical perspective (now mostly phased out)


## Protein Explorer (Chime)



## Protein Explorer*

- http://www.umass.edu/microbio/chime/pe_beta/ pe/protexpl/
- Uses Chime or Jmol for its back-end
- Very flexible, user friendly, well documented, offers morphing, sequence structure interface, comparisons, contextdependent help, smart zooming, off-line
- Browser Plug-in (Like PDF reader)
- Compatible with Netscape (Mac \& Win)


## QuickPDB

## N QuickPDB

Sequence: drag or elick to select residues | 3D: double elick to select residue


## Quick PDB*

- http://www.sdsc.edu/pb/Software.html
- Very simple viewing program with limited manipulation and very limited rendering capacity -- Very fast
- Java Applet (Source code available)
- Compatible with most browsers and computer platforms


## Rasmol



## Rasmol*

- http://www.umass.edu/microbio/rasmol/
- Very simple viewing program with limited manipulation capacity, easy to use!
- "Grand-daddy" of all visual freeware
- Runs as installed "stand-alone" program
- Source code available
- Runs on Mac, Windows, Linux, SGI and most other UNIX platforms


## B (Biomer)



## Biomer (B)

- http://casegroup.rutgers.edu/Biomer/index.html
- Very sophisticated molecular rendering and modelling package for both large and small molecules (kind of rough)
- Supports molecular dynamics \& En. min
- Written in Java (source code available)
- Can run as an applet or stand-alone
- Compatible on most platforms


## Swiss PDB Viewer



## Swiss PDB Viewer*

- http://spdbv.vital-it.ch/
- Among most sophisticated molecular rendering, manipulation and modelling packages (commercial or freeware)
- Supports threading, hom. modelling, energy minimization, seq/struc interface
- Stand-alone version only
- Compatible on Mac, Win, Linux, SGI


## Swiss PDB Tutorial*



## MolMol



## MolMol*

- http://www.mol.biol.ethz.ch/wuthrich/software/molmol/
- Very sophisticated molecular rendering, and manipulation package (among the best graphics of all freeware)
- Special focus on NMR compatibility, supports many calculations/plots
- Stand-alone version only
- Compatible on Win, Unix (nearly all)


## *un

Mac Win Unix Rendr SeqView Super E Min Modeling

| Rasmol | + | + | + | ++ | - | - | - | - |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chime | + | + | - | + | - | - | - | - |
| Prot. Expl. | + | + | - | ++ | + | + | - | - |
| Quick PDB | + | + | + | + | + | - | - | - |
| Biomer | + | + | + | ++ | - | + | + | + |
| SwP Viewer | + | + | + | +++ | + | + | + | + |
| MolMol | - | + | + | +++ | - | + | - | + |

## Visualization Hub

| 000 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4－甾 亘 A A＋Mhttp：／／www．umass．edu／microbio／chime／top5．htm |  |  |  |  |  | Q－Google |  |
| m \＃\＃：Department o．．．ell Biology Login－Depar．．．of Alberta Audiobaba Music Search Bioinformati．．．the U of A！Coilgun Basics 2 Pathguide：t．．．esource list |  |  |  |  |  |  | 》 |
| MolviZ＂Top 5＂ <br> The＂Top 5＂3D Molecular Visualization Technologies <br> for the rest of us．．．＊ <br> ＊．．．who do not solve protein structures． <br> I．Tutorials－II．Tutorial－Authoring Systems－III．Explore Any Molecule－ <br> IV．See Protein Evolution •V．Animate Molecules in Powerpoint <br> top5．molviz．org <br> collected by Eric Martz for <br> MolviZ．Org <br> Last updated：Nov－2008 |  |  |  |  |  | GSE Made with JnMO |  |
| Students <br> －Tutorials show you how the 3D structures of DNA， hemoglobin，and many other macromolecules support their functions． <br> －Find and explore the 3D structure of any macromolecule easily． <br> －Identify the parts of any 3D protein molecule that mutate most slowly， because they must be conserved in order to perform crucial functions． <br> －Easily make 3D macromolecules rotate in your Powerpoint® slides． <br> Educators <br> －Want to eliminate Chime from your classes？ The solution is here！See below ．．． <br> －Project the following resources in lectures， offer them to your students，or assign them． <br> －Some resources are targeted specifically to high school level；most are suitable for college and graduate levels． <br> －Ready－made Tutorials on 3D structures of DNA，hemoglobin，lipid bilayers，water， and many other macromolecules． <br> －Some tutorials include challenge questions （answers on request）． <br> －Customize interactive molecular views easily to show in class，and for your students to rotate，zoom，and admire． <br> －Find and explore the 3D structure of any macromolecule easily． <br> －Identify the parts of any 3D protein molecule that mutate most slowly（because they must be conserved［see Gallery］in order to perform its functions）or most rapidly（to support function，e．g．escape of influenza hemagglutinin from immunity． <br> －Easily make 3D macromolecules rotate in your Powerpoint® slides，and your students can do the same． <br> Researchers <br> －Find and explore the key structural features of any macromolecule，easily． <br> －Locate the positions of crucial residues． <br> －See noncovalent bonds between any moiety and the remainder of the structure． <br> －Annotate interactive macromolecular structures，without learning scripting languages，for journal supplementary materials or your lab group＇s website at Proteopedia．Org，a structural biology wiki with scene－authoring tools． <br> －Identify functional regions by coloring amino acids with their levels of evolutionary conservation－－in minutes， totally automatically if you wish．Locate conserved residues，e．g．for functional mutagenesis studies． <br> －Make publication－quality molecular figures with ease，highlighting specific residues or regions，and customizing rendering and colors． <br> －Easily make 3D macromolecules rotate／animate in your Powerpoint（®） slides． |  |  |  |  |  |  |  |

## Graphics Formats

- GIF
- JPEG
- PNG
- TIFF (Tag Image)
- BMP
- EPS
- PS
- RGP (SGI)



## Graphics Formats*

- GIF (Graphical Interchange Format)
- pronounced "JIF"
- introduced in 1987 by CompuServe
- handles 8 bit colour ( 256 colours)
- Iossy compression (up to 10 X )
- best for drawings, simple B+W or colour diagrams, images with hard edges
- supported by Perl graphics library (GD.pm)
- supports animation \& transparency


## Graphics Formats*

- JPEG (Joint Photographic Experts Group)
- pronounced "JAY-peg"
- exploits eye's poor perception of small changes in colour variation
- handles 24 bit colour (1.6 million colours)
- allows adjustable lossy compression
- best for colour pictures of real objects with varied colour, shadow, fuzzy edges
- among most common web image formats


## Graphics Formats*

- PNG (Portable Network Graphics)
- designed to replace GIF and TIFF
- supports lossless compression
- supports 24 bit, grayscale and 8 bit
- supports transparency \& interlacing
- offers better compression than GIF (15\%)
- supported by new GD.pm Perl library
- problems with many early browsers in viewing PNG (now fixed)


## PovRay (www.povray.org)



## Aliasing \& Antialiasing*



True Image Aliased Image Anti-aliased Image

## Ray Casting (from 3D to 2D)*

- Ray = beam of light
- For each pixel on screen, cast ray from eye thru pixel
- Test every object in scene to see if ray intersects object
- Each ray intersection nearest to eye is made visible, color pixel


## Ray Tracing \& Reflection*

- Used to determine surface appearance
- Begins with ray casting, determine intersects, then recursively sends 2ndary rays to see which objects reflect, which are transparent, which absorb, etc.


## Shadowing*

- Uses ray tracing algorithm
- Sends out 2ndary rays towards light sources to see if opaque objects are in the way, if so, then surface is in shadow



HAV-3C Protease - Alan Gibbs

## Outline

- Visualization Programs
- Vectors \& Matrices
- Difference Distance Matrices
- Molecular Superposition
- Measuring Superposition
- Classifying 3D Structures


## Vectors Define Bonds and Atomic Positions



## Review - Vectors*



Vectors have a length \& a direction

## Review - Vectors

- Vectors can be added together
- Vectors can be subtracted
- Vectors can be multiplied (dot or cross or by a matrix)
- Vectors can be transformed (resized)
- Vectors can be translated
- Vectors can be rotated


## Matrices*

- A matrix is a table or "array" of characters
- A matrix is also called a tensor of "rank 2"

$$
\begin{aligned}
& \text { row } \left.\begin{array}{llllllll} 
& 2 & 4 & 6 & 8 & 9 & 4 \\
1 & 3 & 5 & 7 & 9 & 3 \\
1 & 0 & 1 & 0 & 1 & 0 \\
9 & 4 & 6 & 4 & 3 & 5 \\
3 & 4 & 3 & 4 & 3 & 4
\end{array} \right\rvert\, \\
& \text { A } 5 \times 6 \text { Matrix }
\end{aligned}
$$

## Different Types of Matrices

$$
\left[\begin{array}{llllll}
2 & 4 & 6 & 8 & 9 & 4 \\
1 & 3 & 5 & 7 & 9 & 3 \\
1 & 0 & 1 & 0 & 1 & 0 \\
9 & 4 & 6 & 4 & 3 & 5 \\
3 & 4 & 3 & 4 & 3 & 4 \\
3 & 6 & 7 & 9 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{llllll}
2 & 4 & 6 & 8 & 9 & 4 \\
4 & 3 & 5 & 7 & 9 & 3 \\
6 & 5 & 1 & 0 & 1 & 0 \\
8 & 7 & 0 & 4 & 3 & 5 \\
9 & 9 & 1 & 3 & 3 & 4 \\
4 & 3 & 0 & 5 & 4 & 0
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
3 \\
5 \\
9 \\
7 \\
3
\end{array}\right]
$$

A square Matrix

A symmetric Matrix

A column
Matrix
(A vector)

## Different Types of Matrices*

$$
\left[\begin{array}{cccccc}
A & B & C & D & E & F \\
G & H & I & J & K & L \\
M & N & O & P & Q & R \\
S & T & U & V & W & X
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
\sin \theta & -\cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 4 & 6 \\
\hline
\end{array}\right)
$$

A rectangular Matrix

A rotation Matrix

A row
Matrix
(A vector)

## Review - Matrix Multiplication

$$
\begin{aligned}
& \begin{array}{l}
2 \times 1+4 \times 2+0 \times 0 \\
2 \times 0+4 \times 1+0 \times 1 \\
2 \times 2+4 \times 3+0 \times 0
\end{array} \\
& {\left[\begin{array}{lll}
2 & 4 & 0 \\
1 & 3 & 1 \\
1 & 0 & 0
\end{array}\right] \times\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 3 \\
0 & 1 & 0
\end{array}\right] \begin{array}{l}
1 \times 1+3 \times 2+1 \times 0 \\
1 \times 0+3 \times 1+1 \times 1 \\
1 \times 2+3 \times 3+1 \times 0 \\
1 \times 1+0 \times 2+0 \times 0 \\
1 \\
\\
\\
\\
\\
\\
\\
\\
\end{array}}
\end{aligned}
$$

## Rotation*



## Rotation*

Counterclockwise about x Counterclockwise about z

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

$\left[\begin{array}{ccc}\cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right]$
Clockwise about $x$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right]
$$

Clockwise about z
$\left[\begin{array}{ccc}\cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right]$

## Rotation



## Rotation (Detail)*

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right] \times{ }_{x}^{x}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
0
\end{array} \quad-\cos \theta\right.} \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
\cos \theta+\sin \theta \\
-\sin \theta+\cos \theta
\end{array}\right] .
$$

## Comparing 3D Structures

- Visual or qualitative comparison
- Difference Distance Matrices
- Superimposition or superposition
- Root mean square deviation (RMSD)
- Subgraph isomorphisms (Ullman's algorithm)
- Combinatorial extension (CE)


## Qualitative Comparison



## Same or Different?

## Outline

- Visualization Programs
- Vectors \& Matrices
- Difference Distance Matrices
- Molecular Superposition
- Measuring Superposition
- Classifying 3D Structures


## Difference Distance Matrix*



Object A
Object B

## Difference Distance Matrix*



Hinge motion

## Difference Distance Matrix



## Difference Distance Matrices or DDM' s*

- Simplest method to perform structural comparisons
- Requires no transfomations, no rotations or superpositions
- Very effective at identifying "hinge" motions or localized changes
- Produces a visually pleasing, quantitative measure of similarity


## Superposition*

- Objective is to match or overlay 2 or more similar objects
- Requires use of translation and rotation operators (matrices/vectors)
- Recall that very three dimensional object can be represented by a plane defined by 3 points


## Superposition*



Identify 3 "equivalence" points in objects to be aligned

## Superposition



Translate points a,b,c and a' ,b' ,c' to origin

## Superposition



Rotate the a,b,c plane clockwise by $\theta$ about x axis

## Superposition



Rotate the a,b,c plane clockwise by $\phi$ about $\mathbf{z}$ axis

## Superposition



Rotate the a,b,c plane clockwise by $\psi$ about x axis

## Superposition




Rotate the $\mathbf{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{c}^{\prime}$ plane anticlockwise by $\theta^{\prime}$ about x axis

## Superposition



Rotate the $\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{c}^{\prime}$ plane anticlockwise by $\phi^{\prime}$ about z axis

## Superposition




Rotate the $a^{\prime}, b^{\prime}, c^{\prime}$ plane clockwise by $\psi^{\prime}$ about x axis

## Superposition



Apply all rotations and translations to remaining points

## Superposition



## Returning to the "red" frame



Before


After

## Returning to the "red" frame*

- Begin with the superimposed structures on the $x-y$ plane
- Apply counterclockwise rot. By $\psi$
- Apply counterclockwise rot. By $\phi$
- Apply counterclockwise rot. By $\theta$
- Apply red translation to red origin Just do things in reverse order!


## Shortcomings*

- Requires some initial assumptions regarding the anchoring points for superposition
- Anchoring points can' t always a priori be known or easily calculated
- It "privileges" the first point "a" over " $c$ " which is in turn privileged over " $b$ "


## More General Approaches*

- Monte Carlo or Genetic Algorithms
- Matrix methods using least squares or conjugate gradient minimization (McLachlan/Kabsch)
- Lagrangian multipliers
- Rotation Angle Methods
- Quaternion-based methods (fastest)


## Superposition - Applications*

- Ideal for comparing or overlaying two or more protein structures
- Allows identification of structural homologues (CATH and SCOP)
- Allows loops to be inserted or replaced from loop libraries (comparative modelling)
- Allows side chains to be replaced or inserted with relative ease


## Outline

- Visualization Programs
- Vectors \& Matrices
- Difference Distance Matrices
- Molecular Superposition
- Measuring Superposition
- Classifying 3D Structures


## Measuring Superpositions



## RMSD - Root Mean Square Deviation*

- Method to quantify structural similarity same as standard deviation
- Requires 2 superimposed structures (designated here as "a" \& "b")
- $\mathbf{N}=$ number of atoms being compared

$$
\text { RMSD }=\frac{\sqrt{\sum_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{ai}}-\mathrm{x}_{\mathrm{bi}}\right)^{2}+\left(\mathrm{y}_{\mathrm{ai}}-\mathrm{y}_{\mathrm{bi}}\right)^{2}+\left(\mathrm{z}_{\mathrm{ai}}-\mathrm{z}_{\mathrm{bi}}\right)^{2}}}{\sqrt{\mathrm{~N}}}
$$

## Superpositions for Multiple Structures



## RMSD - For Multiple Structures*

- Requires multiple superimposed structures over a single "averaged" structure ( $\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathrm{z}}$ )
- $\mathbf{N}=$ number of atoms being compared
- $M$ = number of structures superimposed

RMSD $\left.=\sum_{\mathrm{a}} \frac{\left\{\sqrt{\sum_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{ai}}-\overline{\mathrm{x}}_{\mathrm{i}}\right)^{2}+\left(\mathrm{y}_{\mathrm{ai}}-\overline{\mathrm{y}}_{\mathrm{i}}\right)^{2}+\left(\mathrm{z}_{\mathrm{ai}}-\overline{\mathrm{z}_{\mathrm{i}}}\right)^{2}}\right.}{\sqrt{\mathrm{N}}}\right\}$
M

## RMSD without Superposition*





RMS $=\frac{1+4+1}{\sqrt{10}}=1.89$

## RMSD*

- 0.0-0.5 $\AA \longrightarrow$ Essentially Identical
- <1.5 A $\longrightarrow$ Very good fit
- $<5.0 \AA \longrightarrow$ Moderately good fit
- 5.0-7.0 A $\longrightarrow$ Structurally related
- > 7.0 $\AA \longrightarrow$ Dubious relationship
- > $12.0 \AA \longrightarrow$ Completely unrelated


## SuperPose Web Server



## http://wishart.biology.ualberta.ca/SuperPose/

## Outline

- Visualization Programs
- Vectors \& Matrices
- Difference Distance Matrices
- Molecular Superposition
- Measuring Superposition
- Classifying 3D Structures


## Classifying Protein Folds*



## Detecting Unusual Relationships



Similarity between Calmodulin and Acetylcholinesterase

## Classifying Protein Folds



## SCOP Database

Structural Classification of Proteins


Welcome to SCOP: Structural Classification of Proteins.
1.75 release (June 2009)

38221 PDB Entries. 1 Literature Reference. 110800 Domains. (excluding nucleic acids and theoretical models).


Folds, superfamilies, and families statistics here.
New folds superfamilies families.
List of obsolete entries and their replacements.
Authors. Alexey G. Murzin, John-Marc Chandonia, Antonina Andreeva, Dave Howorth, Loredana Lo Conte, Bartlett G. Ailey, Steven E. Brenner, Tim J.' P. Hubbard, and Cyrus Chothia. scop@mrc-lmb.cam.ac.uk

Reference: Murzin A. G., Brenner S. E., Hubbard T., Chothia C. (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536-540. [PDF]
Recent changes are described in: Lo Conte L., Brenner S. E., Hubbard T.J.P., Chothia C., Murzin A. (2002). SCoP database in 2002: refinements accommodate structural genomics. Nucl. Acid Res. 30(1), 264-267. [PDF],
Andreeva A., Howorth D., Brenner S.E., Hubbard T.J.P., Chothia C., Murzin A.G. (2004). SCOP database in 2004: refinements integrate structure and sequence family data. Nucl. Acid Res. 32:D226-D229. [PDF], and
Andreeva A., Howorth D., Chandonia J.-M., Brenner S.E., Hubbard T.J.P., Chothia C., Murzin A.G. (2007). Data growth and its impact on the SCop database: new developments. Nucl. Acids Res. 2008 36: D419-D425; doi:10.1093/nar/gkm993 [PDF].

## Access methods

- Enter scop at the top of the hierarchy
- Keyword search of SCOP entries
- SCOP parseable files
- All SCOP releases and reclassified entry history
- pre-SCOP - preview of the next release
- SCOP domain sequences and pdb-style coordinate files (ASTRAL)
- Hidden Markov Model library for SCOP superfamilies (SUPERFAMILY)
- Structural alignments for proteins with non-trivial relationships (SISYPHUS)
- Online resources of potential interest to SCOP users

SCOP mirrors around the world may speed your access.

## SCOP

- Class folding class derived from secondary structure content
- Fold derived from topological connection, orientation, arrangement and \# $2^{\circ}$ structures
- Superfamily clusters of low sequence ID but related structures \& functions
- Family clusers of proteins with seq ID
$>30 \%$ with $v$. similar struct. \& function


## SCOP Structural Classification



1UBI - beta grasp


1CKA - SH3-like barrel
1TPH - beta/alpha barrel

2IMM - Immunoglobulin like


3CHY - Flavodoxin like


1FXD - Ferredoxin like


1NFN - 4-helix bundle

The eight most frequent SCOP superfolds

## The CATH Database



## http://www.cathdb.info

## CATH

- Class [C] derived from secondary structure content (automatic)
- Architecture (A) derived from orientation of $2^{\circ}$ structures (manual)
- Topology (T) derived from topological connection and \# $2^{\circ}$ structures
- Homologous Superfamily (H) clusters of similar structures \& functions


## CATH - Class



## Secondary structure content (automatic)

## CATH - Architecture



Orientation of secondary structures (manual)

## CATH - Topology



Topological connection and number of secondary structures

## CATH - Homology



Alanine racemase

Dihydropteroat e (DHP) synthetase

FMN dependent fluorescent proteins

7-stranded glycosidases

Superfamily clusters of similar structures \& functions

## Other Servers/Databases

- Dali - http://ekhidna.biocenter.helsinki.fi/dali_server/
- VAST - http://www.ncbi.nIm.nih.gov/Structure/VAST/vast.shtml
- Matras - http://biunit.aist-nara.ac.jp/matras/
- CE - http://cl.sdsc.edu/ce.html
- TopMatch - http://topmatch.services.came.sbg.ac.at/
- PDBsum - http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/


## CE Search



## http://cl.sdsc.edu/ce/all-to-all/1-to-all.html

# CE Search 



## Summary

- Many different tools and formats to visualize 3D structure - learn how to use at least one of them
- Visualization on computers is mostly about matrix and vector manipulation
- Structure comparison also requires the use of linear algebra
- Protein structures can be compared and aligned - just like sequences

