3D Structure Prediction and Assessment

David Wishart Athabasca 3-41 david.wishart@ualberta.ca

Outline & Objectives*

- Become familiar with the Protein Universe and the Protein Structure Initiative
- Learn principles of how to do homology (comparative) modelling of 3D protein structures
- Learn how to do homology modelling on the Web
- Learn how to assess 3D structures (modelled and experimental)

Structural Proteomics: The Motivation

Protein Structure Initiative*

- Organize all known protein sequences into sequence families
- Select family representatives as targets
- Solve the 3D structures of these targets by X-ray or NMR
- Build models for the remaining proteins via comparative (homology) modeling

Protein Structure Initiative*

- Organize and recruit interested structural biologists and structure biology centres from around the world
- Coordinate target selection
- Develop new kinds of high throughput techniques
- Solve, solve, solve, solve....

The Protein Fold Universe

Human Genome Codes for ~21,000 Proteins

Structure Deposition Rate

- Growth has been exponential for the past 10 years
- Approximately 8000 new structures being added each year

Number of New Folds in The PDB*

Protein Structure Initiative

- •25,000 proteins
- •10,000 subset
- •30% ID or
- •30 seq
- •Solve by 2010
- •\$20,000/Structure

Comparative (Homology) Modelling

ACDEFGHIKLMNPQRST--FGHQWERT----TYREWYEGHADS ASDEYAHLRILDPQRSTVAYAYE--KSFAPPGSFKWEYEAHADS MCDEYAHIRLMNPERSTVAGGHQWERT---GSFKEWYAAHADD

Homology Modelling*

- Based on the observation that "Similar sequences exhibit similar structures"
- Known structure is used as a template to model an unknown (but likely similar) structure with known sequence
- First applied in late 1970's using early computer imaging methods (Tom Blundell)

Homology Modelling*

- Offers a method to "Predict" the 3D structure of proteins for which it is not possible to obtain X-ray or NMR data
- Can be used in understanding function, activity, specificity, etc.
- Of interest to drug companies wishing to do structure-aided drug design
- A keystone of Structural Proteomics

Homology Modelling*

- Identify homologous sequences in PDB
- Align query sequence with homologues
- Find Structurally Conserved Regions (SCRs)
- Identify Structurally Variable Regions (SVRs)
- Generate coordinates for core region
- Generate coordinates for loops
- Add side chains (Check rotamer library)
- Refine structure using energy minimization
- Validate structure

Step 1: ID Homologues in PDB

Query Sequence

PDB

Step 1: ID Homologues in PDB

PRTEINSEQENCEPRTEINSEQUENC EPRTEINSEONCEOWERYTRASDFHG TREWQIYPASDFGHKLMCNASQERWW PRETWOLKHGFDSADAMNCVCNQWER **GFDHSDASFWERQWK**

PRTEINSEQENCEPRTEINSEQUENC EPRTEINSEONCEOWERYTRASDFHG TREWOIYPASDFGHKLMCNASOERWW PRETWOLKHGFDSADAMNCVCNOWER GFDHSDASFWERQWK

PRTEINSEQENCEPRTEINSEQUENC EPRTEINSEQQWEWEWQWEWEQWEWEWQ RYEYEWOWNCEOWERYTRASDFHG TREWQIYPASDWERWEREWRFDSFG

Hit #1

PRTEINSEQENCEPRTEINSEQUENC EPRTEINSEQNCEQWERYTRASDFHG TREWQIYPASDFGHKLMCNASOERWW PRETWOLKHGFDSADAMNCVCNOWER GFDHSDASFWERQWK

PRTEINSEQENCEPRTEINSEQUENC EPRTEINSEQQWEWEWQWEWEQWEWEWQ RYEYEWQWNCEQWERYTRASDFHG TR

PRTEINSEQENCEPRTEINSEQUENC

PRTEINSEQENCEPRTEINSEQUENC EPRTEINSEONCEOWERYTRASDFHG TREWOIYPASDFG

Hit #2 PRTEINSEOENCEPRTEINSEOUENC EPRTEINSEQNCEQWERYTRASDFHG TREWOIYPASDFGPRTEINSEQENCEPR TEINSEQUENCEPRTEINSEQNCEQWER YTRASDFHGTREWQIYPASDFG

TREWOIYPASDFGPRTEINSEOENCEPR TEINSEQUENCEPRTEINSEQNCEQWER

YTRASDFHGTREWO

PRTEINSEOENCEPRTEINSEOUENC EPRTEINSEQNCEQWERYTRASDFHG TREWOIYPASDFG

EPRTEINSEONCEOWERYTRASDFHG TREWQIYPASDFGPRTEINSEQENC

Query Sequence

Step 2: Align Sequences

	G	E	Ν	F .	Т	Т	С	S		G	<u>.</u>	N	F.	Т	Т	C	S
G	10	0	0	0	0	0	0	0	G	6	40	30	20	20	0	10	0
E	0	10	0	10	0	0	0	0	Ε	40	60	.30	30	20	0	10	0
N	0	0	10	0	0	0	0	0	Ν	30	30	4	20	20	0	10	0
E	0	0	0	10	0	0	0	0	Ε	20	20	20	30	20	10	10	0
S	0	0	0	0	0	0	0	10	S	20	20	20	20	60	A	10	10
I	0	0	0	0	0	10	0	0	I	10	10	10	10	10	6	10	A
S	0	0	0	0	0	0	0	10	S	0	0	0	0	0	0	0	

Dynamic Programming

Step 2: Align Sequences

Query ACDEFGHIKLMNPQRST--FGHQWERT----TYREWYEG Hit #1 ASDEYAHLRILDPQRSTVAYAYE--KSFAPPGSFKWEYEA Hit #2 MCDEYAHIRLMNPERSTVAGGHQWERT----GSFKEWYAA

Hit #1

Hit #2

Alignment*

- Key step in Homology Modelling
- Global (Needleman-Wunsch) alignment is absolutely required
- Small error in alignment can lead to big error in structural model
- Multiple alignments are usually better than pairwise alignments

Alignment Thresholds*

Threshold for structural homology

Step 3: Find SCR's

Hit #1

Hit #2

Structurally Conserved Regions (SCR's)*

- Corresponds to the most stable structures or regions (usually interior) of protein
- Corresponds to sequence regions with lowest level of gapping, highest level of sequence conservation
- Usually corresponds to secondary structures

Step 4: Find SVR's

Query Hit #1

Hit #1

Hit #2

Structurally Variable Regions (SVR's)*

- Corresponds to the least stable or most flexible regions (usually exterior) of protein
- Corresponds to sequence regions with highest level of gapping, lowest level of sequence conservation
- Usually corresponds to loops and turns

Step 5: Generate Coordinates

אד א

			АЦА								
ATOM	1	Ν	SER A	1	21.389	25.406	-4.628	1.00	23.22	2TRX	152
ATOM	2	CA	SER A	1	21.628	26.691	-3.983	1.00	24.42	2TRX	153
ATOM	3	С	SER A	1	20.937	26.944	-2.679	1.00	24.21	2TRX	154
ATOM	4	0	SER A	1	21.072	28.079	-2.093	1.00	24.97	2TRX	155
ATOM	5	CB	SER A	1	21.117	27.770	-5.002	1.00	28.27	2TRX	156
ATOM	6	OG	SER A	1	22.276	27.925	-5.861	1.00	32.61	2TRX	157
ATOM	7	Ν	ASP A	2	20.173	26.028	-2.163	1.00	21.39	2TRX	158
ATOM	8	CA	ASP A	2	19.395	26.125	-0.949	1.00	21.57	2TRX	159
ATOM	9	С	ASP A	2	20.264	26.214	0.297	1.00	20.89	2TRX	160
ATOM	10	0	ASP A	2	19.760	26.575	1.371	1.00	21.49	2TRX	161
ATOM	1	Ν	ALA A	1	21.389	25.406	-4.628	1.00	23.22	2TRX	152
ATOM	2	CA	ALA A	1	21.628	26.691	-3.983	1.00	24.42	2TRX	153
ATOM	3	С	ALA A	1	20.937	26.944	-2.679	1.00	24.21	2TRX	154
ATOM	4	0	ALA A	1	21.072	28.079	-2.093	1.00	24.97	2TRX	155
АТОМ	5	СВ	ALA A	1	21.117	27.770	-5.002	1.00	28.27	2TRX	156
ATOM	Ũ	0G	SER A	T	22.270	21.925	-5.801	1.00	32.61	2TRX	157
ATOM	7	Ν	GLU A	2	20.173	26.028	-2.163	1.00	21.39	2TRX	158
ATOM	8	CA	GLU A	2	19.395	26.125	-0.949	1.00	21.57	2TRX	159
ATOM	9	С	GLU A	2	20.264	26.214	0.297	1.00	20.89	2TRX	160
ATOM	10	0	GLU A	2	19.760	26.575	1.371	1.00	21.49	2TRX	161

Step 5: Generate Core Coordinates*

- For identical amino acids, transfer all atom coordinates (XYZ) to query protein
- For similar amino acids, transfer backbone coordinates & replace side chain atoms while respecting χ angles
- For different amino acids, transfer only the backbone coordinates (XYZ) to query sequence

Step 6: Replace SVRs (loops)

Query FGHQWERT Hit #1 YAYE -- KS

Loop Library*

- Loops extracted from PDB using high resolution (<2 Å) X-ray structures
- Typically thousands of loops in DB
- Includes loop coordinates, sequence, # residues in loop, Ca-Ca distance, preceding 2° structure and following 2° structure (or their Ca coordinates)

Step 6: Replace SVRs (loops)*

- Must match desired # residues
- Must match Ca-Ca distance (<0.5 Å)
- Must not bump into other parts of protein (no Ca-Ca distance <3.0 Å)
- Preceding and following Ca's (3 residues) from loop should match well with corresponding Ca coordinates in template structure

Step 6: Replace SVRs (loops)

- Loop placement and positioning is done using superposition algorithm
- Loop fits are evaluated using RMSD calculations and standard "bump checking"
- If no "good" loop is found, some algorithms create loops using randomly generated φ/ψ angles

Step 7: Add Side Chains

Amino Acid Side Chains*

Newman Projections

Newman Projections*

Preferred Side Chain \chi Angles*

Somecombinations areBAD.Some are OK.

Relation Between χ and $\phi/\psi*$

Some ϕ_{χ_1} combinations are **BAD**. Some ψ_{χ_1} combinations are **BAD**. The rest are **OK**.

Relation Between χ and ϕ/ψ

Relation Between χ and ϕ/ψ

Relation Between χ and ϕ/ψ *

g+

Serine

g-

Relation Between χ and ϕ/ψ *

g+

g-

Step 7: Add Side Chains*

- Done primarily for SVRs (not SCRs)
- Rotamer placement and positioning is done via a superposition algorithm using rotamers taken from a standardized library (Trial & Error)
- Rotamer fits are evaluated using simple "bump checking" methods

Step 8: Energy Minimization*

Energy Minimization*

- Efficient way of "polishing and shining" your protein model
- Removes atomic overlaps and unnatural strains in the structure
- Stabilizes or reinforces strong hydrogen bonds, breaks weak ones
- Brings protein to lowest energy in about 1-2 minutes CPU time

Energy Minimization (Theory)

- Treat Protein molecule as a set of balls (with mass) connected by rigid rods and springs
- Rods and springs have empirically determined force constants
- Allows one to treat atomic-scale motions in proteins as classical physics problems (OK approximation)

Standard Energy Function*

Energy Terms*

 $\mathbf{K}_{r}(\mathbf{r}_{i} - \mathbf{r}_{j})^{2} \qquad \mathbf{K}_{\theta}(\theta_{i} - \theta_{j})^{2} \qquad \mathbf{K}_{\phi}(1 - \cos(n\phi_{j}))^{2}$

Stretching Bending Torsional

Energy Terms*

q _i q _j /4πεr _{ij}	A _{ij} /r ⁶ - B _{ij} /r ¹²	C _{ij} /r ¹⁰ - D _{ij} /r ¹²

Coulomb

van der Waals

H-bond

An Energy Surface

Overhead View

Side View

Minimization Methods*

- Energy surfaces for proteins are complex hyperdimensional spaces
- Biggest problem is overcoming local minimum problem
- Simple methods (slow) to complex methods (fast)
 - Monte Carlo Method
 - Steepest Descent
 - Conjugate Gradient

Monte Carlo Algorithm

- Generate a conformation or alignment (a state)
- Calculate that state's energy or "score"
- If that state's energy is less than the previous state accept that state and go back to step 1
- If that state's energy is greater than the previous state accept it if a randomly chosen number is < e^{-E/kT} where E is the state energy otherwise reject it
- Go back to step 1 and repeat until done

Conformational Sampling

lower energy

lowest energy

highest energy

Monte Carlo Minimization

Performs a progressive or directed random search

Steepest Descent & Conjugate Gradients

- Frequently used for energy minimization of large (and small) molecules
- Ideal for calculating minima for complex (I.e. non-linear) surfaces or functions
- Both use derivatives to calculate the slope and direction of the optimization path
- Both require that the scoring or energy function be differentiable (smooth)

Steepest Descent Minimization

Makes small locally steep moves down gradient

Conjugate Gradient Minimization

Includes information about the prior history of path

Energy Minimization*

- Very complex programs that have taken years to develop and refine
- Several freeware options to choose
 - XPLOR (Axel Brunger, Yale)
 - GROMACS (Gronnigen, The Netherlands)
 - AMBER (Peter Kollman, UCSF)
 - CHARMM (Martin Karplus, Harvard)
 - TINKER (Jay Ponder, Wash U))

The Final Result

- Identify homologous sequences in PDB
- Align query sequence with homologues
- Find Structurally Conserved Regions (SCRs)
- Identify Structurally Variable Regions (SVRs)
- Generate coordinates for core region
- Generate coordinates for loops
- Add side chains (Check rotamer library)
- Refine structure using energy minimization
- Validate structure

How Good are Homology Models?

Outline

- The Protein Universe and the Protein Structure Initiative
- Homology (Comparative) Modelling of 3D Protein Structures
- Homology Modelling on the Web
- Assessing 3D Structures (modelled and experimental)

Modelling on the Web

- Prior to 1998 homology modelling could only be done with commercial software or command-line freeware
- The process was time-consuming and labor-intensive
- The past few years has seen an explosion in automated web-based homology modelling servers
- Now anyone can homology model!

Swiss-Model*

000	SWISS-MODEL		
SWISS-MODEL +			
Swissmodel.expasy.org		ର୍ବ୍ଧ ⊽ ୯ 🕽 🚷 ଟ proteus2	۹ 🔒 🖪 •
Siber	ZENTRUM rsitäl Basel enter for Molecular Life Sciences	WISS-MODEL	
Modelling myWorkspace Automated Mode Alignment Mode Project Mode Project Mode Template Identification Domain Annotation Structure Assessment Template Library Repository Search by Sequence Search by AC Search by full text Documentation SWISS-MODEL Workspace SWISS-MODEL Repository Structures & Models Helpdesk	 SWISS-MODEL is a fully automated protein structure homology-modeling server, accessible via the ExPASy web server, or from the program DeepView (Swiss Pdb-Viewer). The purpose of this server is to make Protein Modelling accessible to all biochemists and molecular biologists worldwide. What's new? Find more news on SWISS-MODEL Blog faster news on Twitter Follow us on Facebook 	 SWISS-MODEL Team Torsten Schwede: Project Leader Torstan Kiefer: SWISS-MODEL Repository Lorenza Bordoli: Method Development and user æuport Ronstantin Arnold: SWISS-MODEL Workspace Men you publish or report results using SWISS-MODEL, please cite the relevant publications: Arnold K., Bordoli L., Kopp J., and Schwede T. (2006). The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22, 195-201. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009). The SWISS-MODEL Korkspace: A veb-based environment for protein structure homology modelling. Bioinformatics, 22, 195-201. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009). The SWISS-MODEL Korkspace: A veb-based environment for protein structure homology modelling. Bioinformatics, 22, 195-201. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009). The SWISS-MODEL Korkspace: A veb-based environment for protein structure homology modelling. Bioinformatics, 22, 195-201. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009). The SWISS-MODEL Korkspace: A veb-based environment for protein structure homology associated resources. Nucleic Acids Research. 37, D387-D392. Peitsch, M. C. (1995) Protein modeling by E-mail Bio/Technology 13: 658-660. 	

http://swissmodel.expasy.org//SWISS-MODEL.html

3D-Jigsaw

O O O 3D-JIGSAW Protein Comparative Modelling Server								
+ 🖓 🖶 A A C Shttp://bmm.cancerresearchuk.org/~3djigsaw/ So Qr Google								
EBI SSM Home Page	EMoT: Encycllar Targets	ISI Web of Kledge [v3.0]	Logout/Session	Apple (102) ▼ Ar	mazon eBay	Yahoo!	News (946) v	
3D-JIGSAW Protein Compar								

Warning: Y	ou must provide a valid E-mail	address to retrieve the results of your query.				
Your name						
Your E-Mail Add	iress					
Your E-Mail Add	dress (verification)					
Prote	Automatic • ein identifier Interactive!	Split your sequence into domains, choose the modelling templates and edit the alignments				
3D-JIGSAHV						
	Protein amino acid sec	quence in one letter code				
		• 				
	Submit	Reset				

Please Note: If you need to submit a large number of jobs to this server, please contact us first.

(NEW) You can now try the latest version The computing time is significantly	longer but the results should be even better!
Home Submission Help Cite Us Links Contact Us Disclaimer CANCE	R RESEARCH UK

http://bmm.cancerresearchuk.org/~3djigsaw/

Proteus2*

sequence)

OR Select a file to upload (FASTA format)

http://www.proteus2.ca/proteus2/

Modelled Protein Databases

- Databases containing 3D structural models of 100,000's of proteins and protein domains
- Idea is to generate a 3D equivalent of GenBank (saves on everyone having to model everytime they want to look at a structure)
- Helps in Proteomics Target Selection

ModBase Search Page					
▲ ► 🙆 🖶 A A + 🦓 http://mod	base.compbio.ucsf.edu/modbase-cgi/sea	arch_form.cgi	(C Q Google	
Department oell Biology Login- Depar	of Alberta Audiobaba Music Search E	Bioinformati the U of A!	Coilgun Basics 2 Pat	hguide: tesoure	ce list 🛛 ≫
UCSF University of California, San Francisco About U					
Home User Login Mod	Base Search Page	ModWeb Modelling Serv	ver Hel	o Cur	rent Logins
Dat Welcome to Mod	abase of Comparative P	Protein Structu	re Models	deling.	Ĵ
General Information					
Statistics	ModBase search form			Search	
News	Search type 2 Model(Default)	Display t	VDE 👔 - Model Detail (grap	hical) 🛟	
Project Pages					
Documentation	All available datasets are selected	d 🖂	Select spec	fic dataset(s)	
Authors and Acknowledgements		-			
Publications	To include the academic (comprehe	ensive) dataset, go to 'User	Login'!		
Todo List	Search by properties				
Related Resources	Property 👔 Database Accession Numbe	er 🗘			
	Organism 👔 🛛 ALL	¢ or			
Note: MODBASE contains theoretically calculated models, not experimentally determined structures. The models may contain significant errors.			<u>Adv.</u>	anced search	

Users of ModBase are requested to cite this article in their publications:

MODBASE, a database of annotated comparative protein structure models and associated resources. Ursula Pieper, Narayanan Eswar, Ben M. Webb, David Eramian, Libusha Kelly, David T. Barkan, Hannah Carter, Parminder Mankoo, Bachel Karchin, Marc A. Marti-Benom, Fred P. Davis, Andrej Sall Nucleic Acids Research 37, D347-D354, 2009.

MODBASE is maintained by Ursula Pieper in the group of Andrej Sall, Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biomedical Research, Mission Bay Campus, Byers Hall, University of California San Francisco, San Francisco, CA 94158-2330. Please address all inquiries to modbase@salliab.org.

Outline

- The Protein Universe and the Protein Structure Initiative
- Homology (Comparative) Modelling of 3D Protein Structures
- Homology Modelling on the Web
- Assessing 3D Structures (modelled and experimental)

Why Assess Structure?

- A structure can (and often does) have mistakes
- A poor structure will lead to poor models of mechanism or relationship
- Unusual parts of a structure may indicate something important (or an error)

Famous "bad" structures*

- Azobacter ferredoxin (wrong space group)
- Zn-metallothionein (mistraced chain)
- Alpha bungarotoxin (poor stereochemistry)
- Yeast enolase (mistraced chain)
- Ras P21 oncogene (mistraced chain)
- Gene V protein (poor stereochemistry)

How to Assess Structure?*

- Assess experimental fit (look at R factor or rmsd)
- Assess correctness of overall fold (look at disposition of hydrophobes)
- Assess structure quality (packing, stereochemistry, bad contacts, etc.)

A Good Protein Structure..*

X-ray structure

- R = 0.59 random chain
- R = 0.45 initial structure
- R = 0.35 getting there
- R = 0.25 typical protein
- R = 0.15 best case
- R = 0.05 small molecule

<u>NMR structure</u>

- rmsd = 4 Å random
- rmsd = 2 Å initial fit
- rmsd = 1.5 Å OK
- rmsd = 0.8 Å typical
- rmsd = 0.4 Å best case
- rmsd = 0.2 Å dream on

A Good Protein Structure..*

- Minimizes disallowed torsion angles
- Maximizes number of hydrogen bonds
- Maximizes buried hydrophobic ASA
- Maximizes exposed hydrophilic ASA
- Minimizes interstitial cavities or spaces

A Good Protein Structure..*

- Minimizes number of "bad" contacts
- Minimizes number of buried charges
- Minimizes radius of gyration
- Minimizes covalent and noncovalent (van der Waals and coulombic) energies

Radius & Radius of Gyration

- RAD = 3.95 x NUMRES^{0.6} + 7.25 (Folded)
- RADG = 0.41 x (110 x NUMRES) ^{0.5} (Unfolded)

Radius of Gyration

Packing Volume

Loose Packing Dense Packing Protein Proteins are Densely Packed

Accessible Surface Area

Accessible Surface Area*

Accessible Surface Area*

- Solvation free energy is related to ASA
 ♦ΔG = ΣΔσ_iA_i
- Proteins typically have 60% of their ASA comprised of polar atoms or residues
- Proteins typically have 40% of their ASA comprised of nonpolar atoms or residues
- ΔASA (obs exp.) reveals shape/roughness

Structure Validation Servers

- WhatIf Web Server http://swift.cmbi.ru.nl/ servers/html/index.html
- Protein Structure Validation Suite http://psvs-1_3.nesg.org/
- Verify3D -

http://nihserver.mbi.ucla.edu/Verify_3D/

- Molprobity http://molprobity.biochem.duke.edu/
- PROSESS http://www.prosess.ca/
- VADAR http://vadar.wishartlab.com/

000	NIH MBI Laboratory for Structural Genomics and Proteomics											
	🙆 🖶 🗛 🕂	🖒 🔍 Google										
m III	Department oell Biology	Login- Depar of Alberta	Audiobaba Music Search	Bioinformati the U of A!	Coilgun Basics 2	>>>						

The UCLA-DOE Structure Evaluation server is a tool designed to help in the refinement of crystallographic structures. It will provide you with a visual analysis of the quality of a putative crystal structure for a protein. Verify3D expects this crystal structure to be submitted in PDB format. Please note that Verify3D works best on proteins with at least 100 residues. To submit a crystal structure for analysis, simply select it with the file dialog which is activated by clicking on the Browse button below, then click the Send File button.

Form Based PDB File Upload:

Choose File no file selected

Send File Clear Form Refresh

Verify3D analyzes the compatibility of an atomic model (3D) with its own amino acid sequence (1D). Each residue is assigned a structural class based on its location and environment (alpha, beta, loop, polar, nonpolar, etc). A collection of good structures is used as a reference to obtain a score for each of the 20 amino acids in this structural class. The scores of a sliding 21-residue window (from -10 to +10) are added and plotted for individual residues.

Obtain your own standalone copy of Profile Search/Environments program/Verify 3D

References: [Bowie et al., 1991; Luethy et al., 1992]. end_a_page_with_links();

High scores = good Low scores = bad

http://vadar.wishartlab.com/

VADAR

(---

Vadar C	GI Pro	gram					\bigcirc								
() · C () () (http://redpoll.pharmacy.ualberta.ca/ci 😭 🔻 Google Q					le Q				C	00	Mozilla Firefox				
Most Visited = Getting Started Latest Headlines 🔊							(A) - (C) (X) (A) (D (http://redpoll.pharmacy.ualberta.ca/tr (X) - (X) Coogle Q					2			
Vadar CGI Program +							.						d = Catting Stated Latest Headlines D	_	
	-1v-	1.00		עדארידומי			A GIL					http://r	rednoll nh. 3385821 stats tyt	-	
5.4 CCH C 3,4 D 82.5	0.63	14	0 1.17	360.0	- 92	6	100					1009.771		-	
	00		1.02	1 -67.0	-290	Mozill	a Firefox						* 3D PROFILE QUALITY INDEX *		
4 ILB BBB B-1 I 12.0		D -			Bart	n: Urada	oll pharm	a cu ualla	orto co (tra	<u>~</u>			****************		
		Coogle C C C C C C C C C C C C C C C C C C C									(9 = best) (0 = worst)				
8 THR CEC C 11	Most	Most Visited - Getting Started Latest Headlines A									(* = indicates possible problem)				
		http://redpoll.ph3385821.main.txt													
	RES.	RES.	SCND HB	OND BTUR	RES.	FRAC.	RES.	FRAC.	PHI	PSI	OMEGA	PRBLM	SDKIIHLTDD SFDTDVLKAD GAILVDFWAE WCGPCKMIAP ILDEIADEYQ 50		
VADAR	NUM.	. NAME	STRUC HB	OND BTOR	ASA	ASA	VOL.	VOL.	PH1	P51	OMEGA	PRBLM	677777777 77888899999 8988888888 8887777777 7777887777		
	2	SER ASP	CCH C 3,	4 I I	83.5 127.7	0.63	106.0 116.6	1.17	360.0 -67.0	5.7 -25.3	-179.8 -176.6				
	3 4	LYS	CCC C 1 BBB B 1	I	79.7	0.37	182.1 153.8	1.18	-107.4	15.8 129.9	177.3 176.9		776777777 777777889 9888877787 777777777 7777778877		
VADAB Output Blots (ppg Format)	5	ILE	BBB B 57	,55	81.6	0.41	162.6	1.01	-81.3	130.5	177.4				
VADAR Output Flots (png Format)	7	LEU	BBB B 57	_	7.0	0.03	157.1	0.96	-97.5	164.2	174.6	[EFLDANLA 108		
Ramachandran plot	8 9	ASP	CCC C 11	,12 I	40.4	0.51	113.5	1.00	-135.9	-27.9	-180.0				
Fractional Accessible Surface Area	10 11	ASP SER	CCC C 8,	16 I	122.8	0.78	115.0 93.8	1.01	-76.5 -83.8	2.3 -9.0	179.8 -174.8				
Fractional Residue Volume	12	PHE	CCC C 9		14.6	0.06	182.7	0.93	-104.7	80.9	-176.8	ъ	c Observed Expected		
Stereo/Packing Quality Index	14	THR	CCC C 19	,18	71.4	0.47	107.6	0.92	-162.2	-88.9	179.9	-	ion 1.68 -		
<u>3D Profile Quality Index</u>	16	VAL	CCC C 11	,14	0.0	0.40	130.0	0.98	-132.6	-12.0	-178.1		n phipsi core 99 (91%) 97 (90%)		
VADAD Output Elles (Text Format)	17 18	LEU LYS	CCC C 14		60.0 136.6	0.29	144.3 137.0	0.88	-86.4 -79.8	-33.9 -40.5	177.3		n phipsi allowed 7 (6%) 8 (7%) n phipsi generous 1 (0%) 1 (1%)		
VADAR Output Flies (Text Format)	19 20	ALA	CCC C 14		28.2	0.23	85.6	0.98	-53.3	125.0	176.8	ļ	n phipsi outside 0 (0%) 0 (0%)		
Main-Chain Table	21	GLY	CCC C 83		45.3	0.50	64.7	1.03	74.4	-177.7	-175.8		n omega allowed 1 (0%) 3 (3%)		
Side-Chain Table	22	ILE	BBB B 54 BBB B 81	,81	6.0	0.03	160.9	1.00	-132.2	130.8	179.5		n omega generous 0 (0%) 0 (0%) n omega outside 0 (0%) 1 (1%)		
H-Bond Table	24 25	LEU VAL	BBB B 56 BBB B 79	,54 ,79	0.0	0.00	180.6 139.4	1.11	-106.1 -112.3	120.9 124.5	-176.6 176.2		ng defects 5 7		
Statistics Table	26 27	ASP PHE	BBB B 58 BBB B 77	,56	2.4	0.01	154.4	1.36	-98.1 -91.1	118.4	171.8	v	5% buried 28 21	n	
Pack to VADAD have appe	28	TRP	BBB B 60	,58	42.6	0.16	232.8	1.01	-149.2	172.8	174.1		d charges 1 0		
Back to VADAK nome page	30	GLU	CCC C	I	116.3	0.61	135.5	1.02	-71.8	-22.8	-179.5		alues obtained from 1. Morris AL. MacArthur MW. Hutchinson EG and		
	31	CYS	HHH H 29	,36 I	169.7	0.64	192.5	0.83	-82.2	-3.1 109.4	-172.8		M. Proteins. 1992 Apr;12(4):345-364. 2. Chiche L., Gregoret LM,		
This page is powered by <u>Gnuplot</u> .	33 34	GLY PRO	HHH H 36 HHH H 37	,37	31.0 59.2	0.34	51.0 114.3	0.81	-56.2	-58.1 -28.6	179.3 178.1		nd Kollman PA. Proc Natl Acad Sci U S A. 1990 Apr;8/(8):3240-3243		
Please report bugs and send your comments to: Haiyan Zhang, David Wishart	35	CYS	HHH H 32	,38	3.2	0.02	116.8	1.12	-63.8	-43.7	176.3		**************************************	U	
<u>rtaryan Enang, Davia Wishari</u> .	37	MET	HHH H 33	,34	131.8	0.60	143.3	0.88	-61.7	-36.0	-178.0		******	*	
	38	ALA	ннн н 42 ННН Н 36	,41,43	31.7	0.01	101.7	1.05	-87.5	-10.1	179.3			1	
Done	40	PRO ILE	HHH H 43 HHH H 38	,44 ,45	77.2 27.9	0.50	106.9 164.7	0.93	-66.2 -64.5	-32.6 -40.0	179.3 -179.4				
	42	LEU	ннн н 38	,46	0.0	0.00	174.7	1.07	-67.1	-33.8	175.3				
	44	GLU	ннн н 40	,48	78.1	0.41	130.1	0.98	-63.2	-43.5	179.5		Y		
	Done) + +	4		

Structure Validation Programs

- PROCHECK http://www.biochem.ucl.ac.uk/~roman/ procheck/procheck.html
- PROSA II http://lore.came.sbg.ac.at/People/mo/ Prosa/prosa.html
- WhatCheck http://swift.cmbi.kun.nl/gv/ whatcheck/
- PDB Validation Suite http://sw-tools.pdb.org/apps/VAL/index.html
- **DSSP** http://swift.cmbi.kun.nl/gv/dssp/

Procheck*

- Homology modeling is the most accurate method known for predicting 3D protein structures
- Recent advances have made homology modeling trivial to do over the web
- There are many different ways of evaluating and validating the quality of 3D structure models
- Homework: spend 15-20 minutes visiting
 the websites mentioned today

How To Do Your Assignment

- Follow the instructions carefully
- Each of the programs or websites you need to use has been mentioned in the last 3 lectures, if you' re smart you may only need to use 3 (local) tools
- This assignment will take 4-5 hours to complete and should be 6-8 pages long