Proteomics & Bioinformatics Part I

David Wishart 3-41 Athabasca Hall david.wishart@ualberta.ca

Objectives

- Learn about the 3 different types of proteomics
- Become familiar with expressionbased proteomics techniques
- Become familiar with mass spectrometry for protein or peptide ID
- Become familiar with some of the software tools and algorithms for peptide/protein ID

What is Proteomics?*

 Proteomics - A newly emerging field of life science research that uses High Throughput (HT) technologies to display, identify and/or characterize all the proteins in a given cell, tissue or organism (i.e. the proteome).

Proteomics & Bioinformatics

Genomics

				S		
1990	1995	2000	2005	2010	2015	2020

3 Kinds of Proteomics*

- Structural Proteomics
 - High throughput X-ray Crystallography/Modelling
 - High throughput NMR Spectroscopy/Modelling
- Expressional or Analytical Proteomics
 - Electrophoresis, Protein Chips, DNA Chips, 2D-HPLC
 - Mass Spectrometry, Microsequencing
- Functional or Interaction Proteomics
 - HT Functional Assays, Ligand Chips
 - Yeast 2-hybrid, Deletion Analysis, Motif Analysis

Expressional Proteomics

2-D Gel

QTOF Mass Spectrometry

Expressional Proteomics

Expressional Proteomics*

- To separate, identify and quantify protein expression levels using high throughput technologies
- Expectation of 100's to 1000's of proteins to be analyzed
- Requires advanced technologies and plenty of bioinformatics support

Electrophoresis & Proteomics*

2D Gel Electrophoresis

- Simultaneous separation and detection of ~2000 proteins on a 20x25 cm gel
- Up to 10,000 proteins can be seen using optimized protocols

Why 2D GE?*

- Oldest method for large scale protein separation (since 1975)
- Still most popular method for protein display and quantification
- Permits simultaneous detection, display, purification, identification, quantification
- Robust, increasingly reproducible, simple, cost effective, scalable & parallelizable
- Provides pl, MW, quantity

Steps in 2D GE & Peptide ID

- Sample preparation
- Isoelectric focusing (first dimension)
- SDS-PAGE (second dimension)
- Visualization of proteins spots
- Identification of protein spots
- Annotation & spot evaluation

2D Gel Principles*

Isoelectric Focusing (IEF)

IEF Principles*

Isoelectric Focusing*

- Separation of basis of pl, not Mw
- Requires very high voltages (5000V)
- Requires a long period of time (10h)
- Presence of a pH gradient is critical
- Degree of resolution determined by slope of pH gradient and electric field strength
- Uses ampholytes to establish pH gradient
- Can be done in "slab" gels or in strips (IPG strips for 2D gel electrophoresis)

Steps in 2D GE & Peptide ID

- Sample preparation
- Isoelectric focusing (first dimension)
- SDS-PAGE (second dimension)
- Visualization of proteins spots
- Identification of protein spots
- Annotation & spot evaluation

SDS PAGE

SDS PAGE Tools

SDS PAGE Principles*

🖊 SQ Na ⁺

Sodium Dodecyl Sulfate

SDS-PAGE Principles*

SDS-PAGE

- Separation of basis of MW, not pl
- Requires modest voltages (200V)
- Requires a shorter period of time (2h)
- Presence of SDS is critical to disrupting structure and making mobility ~ 1/MW
- Degree of resolution determined by %acrylamide & electric field strength

SDS-PAGE for 2D GE

- After IEF, the IPG strip is soaked in an equilibration buffer (50 mM Tris, pH 8.8, 2% SDS, 6M Urea, 30% glycerol, DTT, tracking dye)
- IPG strip is then placed on top of pre-cast SDS-PAGE gel and electric current applied
- This is equivalent to pipetting samples into SDS-PAGE wells (an infinite #)

SDS-PAGE for 2D GE

equilibration

SDS-PAGE

2D Gel Reproducibility

Advantages and Disadvantages of 2D GE*

- Provides a hard-copy record of separation
- Allows facile quantitation
- Separation of up to 9000 different proteins
- Highly reproducible
- Gives info on Mw, pl and post-trans modifications
- Inexpensive

- Limited pl range (4-8)
- Proteins >150 kD not seen in 2D gels
- Difficult to see membrane proteins (>30% of all proteins)
- Only detects high abundance proteins (top 30% typically)
- Time consuming

Protein Detection*

- Coomassie Stain (100 ng to 10 μg protein)
- Silver Stain (1 ng to 1 μg protein)
- Fluorescent (Sypro Ruby) Stain (1 ng & up)

Stain Examples

Coomassie

Silver Stain

Copper Stain

Multicolor Staining with Sypro fluorescent stains

Steps in 2D GE & Peptide ID

- Sample preparation
- Isoelectric focusing (first dimension)
- SDS-PAGE (second dimension)
- Visualization of proteins spots
- Identification of protein spots
- Annotation & spot evaluation

Protein Identification*

- 2D-GE + MALDI-MS
 - Peptide Mass Fingerprinting (PMF)
- 2D-GE + MS-MS
 - MS Peptide Sequencing/Fragment Ion Searching
- Multidimensional LC + MS-MS
 - ICAT Methods (isotope labelling)
 - MudPIT (Multidimensional Protein Ident. Tech.)
- 1D-GE + LC + MS-MS
- De Novo Peptide Sequencing

2D-GE + MALDI (PMF)*

2D-GE + MS-MS

ICAT (Isotope Coded Affinity Tag)*

Mass Spectrometry

 Analytical method to measure the molecular or atomic weight of samples

MS Principles*

- Find a way to "charge" an atom or molecule (ionization)
- Place charged atom or molecule in a magnetic field or subject it to an electric field and measure its speed or radius of curvature relative to its mass-to-charge ratio (mass analyzer)
- Detect ions using microchannel plate or photomultiplier tube

Mass Spec Principles*

Typical Mass Spectrometer

Matrix-Assisted Laser Desorption Ionization

MALDI

MALDI Ionization*

- Absorption of UV radiation by chromophoric matrix and ionization of matrix
- Dissociation of matrix, phase change to supercompressed gas, charge transfer to analyte molecule
- Expansion of matrix at supersonic velocity, analyte trapped in expanding matrix plume (explosion/"popping")

MALDI Spectra (Mass Fingerprint)

Masses in MS*

- Monoisotopic mass is the mass determined using the masses of the most abundant isotopes
- Average mass is the abundance weighted mass of all isotopic components

Amino Acid Residue Masses

Monoisotopic Mass

Glycine	57.02147	Aspartic acid
Alanine	71.03712	Glutamine
Serine	87.03203	Lysine
Proline	97.05277	Glutamic acid
Valine	99.06842	Methionine
Threonine	101.04768	Histidine
Cysteine	103.00919	Phenylalanine
Isoleucine	113.08407	Arginine
Leucine	113.08407	Tyrosine
Asparagine	114.04293	Tryptophan

115.02695 128.05858 128.09497 129.04264 131.04049 137.05891 147.06842 156.10112 163.06333 186.07932

Amino Acid Residue Masses

Average Mass

Glycine	57.0520	Aspartic acid	115.0886
Alanine	71.0788	Glutamine	128.1308
Serine	87.0782	Lysine	128.1742
Proline	97.1167	Glutamic acid	129.1155
Valine	99.1326	Methionine	131.1986
Threonine	101.1051	Histidine	137.1412
Cysteine	103.1448	Phenylalanine	147.1766
Isoleucine	113.1595	Arginine	156.1876
Leucine	113.1595	Tyrosine	163.1760
Asparagine	114.1039	Tryptophan	186.2133

Calculating Peptide Masses

- Sum the monoisotopic residue masses
- Add mass of H₂O (18.01056)
- Add mass of H⁺ (1.00785 to get M+H)
- If Met is oxidized add 15.99491
- If Cys has acrylamide adduct add 71.0371
- If Cys is iodoacetylated add 58.0071
- Other modifications are listed at
 - http://prowl.rockefeller.edu/aainfo/deltamassv2.html
- Only consider peptides with masses > 400

Peptide Mass Fingerprinting (PMF)

Peptide Mass Fingerprinting*

- Used to identify protein spots on gels or protein peaks from an HPLC run
- Depends of the fact that if a peptide is cut up or fragmented in a known way, the resulting fragments (and resulting masses) are unique enough to identify the protein
- Requires a database of known sequences
- Uses software to compare observed masses with masses calculated from database

Principles of Fingerprinting*

<u>Sequence</u>	<u>Mass (м+н)</u>	Tryptic Fragments
>Protein 1 acedfhsakdfqea sdfpkivtmeeewe ndadnfekqwfe	4842.05	acedfhsak dfgeasdfpk ivtmeeewendadnfek gwfe
>Protein 2 ace <mark>k</mark> dfhsadfqea sdfp <mark>k</mark> ivtmeeewe nkdadnfeqwfe	4842.05	acek dfhsadfgeasdfpk ivtmeeewenk dadnfeqwfe
>Protein 3 acedfhsadfqe <mark>k</mark> a sdfp <mark>k</mark> ivtmeeewe nda <mark>k</mark> dnfeqwfe	4842.05	acedfhsadfgek asdfpk ivtmeeewendak dnfegwfe

Principles of Fingerprinting*

Sequence

<u>Mass (м+н)</u>

>Protein 1 acedfhsakdfqea sdfpkivtmeeewe ndadnfekqwfe

>Protein 2 acekdfhsadfqea sdfpkivtmeeewe nkdadnfeqwfe

>Protein 3 acedfhsadfqeka sdfpkivtmeeewe ndakdnfeqwfe 4842.05

4842.05

4842.05

Mass Spectrum

Predicting Peptide Cleavages

000			PeptideCutter		
4	PeptideCutter	(+)			
() (we	b. expasy.org /peptide_cutter/			☆ マ C 🕄 Trugbank	۹) 🍙 💽 -
Sib 🖉	ExPASy Bioinformatics Resource Portal		PeptideCutter		Home I Contact
Peptide	Cutter				
Peptide(Peptide(Cutter [references / docu Cutter returns the query s	mentation] predicts po equence with the poss	tential cleavage sites cleaved by protease ible cleavage sites mapped on it and /or a	s or chemicals in a given protein table of cleavage site positions	n sequence.
Enter a l sequenc	JniProtKB (Swiss-Prot or e (e.g. 'SERVELAT'):	TrEMBL) protein ident	tifier, ID (e.g. ALBU_HUMAN), or accessio	n number, AC (e.g. P04406), or	r an amino acid
(Derferre)	the cleavage of the prot	oin (new) the fields			
Perform	the cleavage of the prote	ent. Reset the helds.			
Please,	select				
⊙ all av○ only f	vailable enzymes and che the following selection of	emicals enzymes and chemic	cals		
	Arg-C proteinase		Asp-N endopeptidase	Asp-N endope N-terminal Glu	ptidase +
	BNPS-Skatole		Caspase1	Caspase2	
	Caspase3		Caspase4	Caspase5	
	Caspase6		Caspase7	Caspase8	
	Caspase9		Caspase10		
	Chymotrypsin-high spec	cificity (C-term to	Chymotrypsin-low specificity (C-term	n to	

http://web.expasy.org/peptide_cutter/

http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html

The cleavage specificities of selected enzymes and chemicals:

A general model of enzymatic cleavage:

Fig.1 Schematic representation of enzyme-substrate complex with eight binding sites. Positions Pn to Pm' in the substrate are counted from the bond between P1 and P1', where the cleavage occurs.

Why Trypsin?*

- Robust, stable enzyme
- Works over a range of pH values & Temp.
- Quite specific and consistent in cleavage
- Cuts frequently to produce "ideal" MW peptides
- Inexpensive, easily available/purified
- Does produce "autolysis" peaks (which can be used in MS calibrations)
 - 1045.56, 1106.03, 1126.03, 1940.94, 2211.10, 2225.12, 2283.18, 2299.18

Preparing a Peptide Mass Fingerprint Database

- Take a protein sequence database (Swiss-Prot or nr-GenBank)
- Determine cleavage sites and identify resulting peptides for each protein entry
- Calculate the mass (M+H) for each peptide
- Sort the masses from lowest to highest
- Have a pointer for each calculated mass to each protein accession number in databank

Building A PMF Database

Sequence DB

>P12345 acedfhsakdfqea sdfpkivtmeeewe ndadnfekqwfe

>P21234 acekdfhsadfqea sdfpkivtmeeewe nkdadnfeqwfe

>P89212 acedfhsadfqeka sdfpkivtmeeewe ndakdnfeqwfe

Calc. Tryptic Frags

acedfhsak dfgeasdfpk ivtmeeewendadnfek gwfe

acek dfhsadfgeasdfpk ivtmeeewenk dadnfeqwfe

acedfhsadfgek asdfpk ivtmeeewendak dnfegwfe

<u>Mass List</u>

450.2017 (P21234) 609.2667 (P12345) 664.3300 (P89212) 1007.4251 (P12345) (P89212) 1114.4416 1183.5266 (P12345) 1300.5116 (P21234) 1407.6462 (P21234) 1526.6211 (P89212) (P89212) 1593.7101 1740.7501 (P21234) 2098.8909 (P12345)

The Fingerprint (PMF) Algorithm*

- Take a mass spectrum of a trypsincleaved protein (from gel or HPLC peak)
- Identify as many masses as possible in spectrum (avoid autolysis peaks)
- Compare query masses with database masses and calculate # of matches or matching score (based on length and mass difference)
- Rank hits and return top scoring entry this is the protein of interest

Query (MALDI) Spectrum

Query vs. Database

Query Masses

Database Mass List

450.2201 609.3667 698.3100 1007.5391 1199.4916 2098.9909

-	450.2017	(P21234)
-	609.2667	(P12345)
	664.3300	(P89212)
-	1007.4251	(P12345)
	1114.4416	(P89212)
	1183.5266	(P12345)
	1300.5116	(P21234)
	1407.6462	(P21234)
	1526.6211	(P89212)
	1593.7101	(P89212)
Ν	1740.7501	(P21234)
	2098.8909	(P12345)

<u>Results</u>

- 2 Unknown masses
- 1 hit on P21234
- 3 hits on P12345

Conclude the query protein is P12345

What You Need To Do PMF*

- A list of query masses (as many as possible)
- Protease(s) used or cleavage reagents
- Databases to search (SWProt, Organism)
- Estimated mass and pl of protein spot (opt)
- Cysteine (or other) modifications
- Minimum number of hits for significance
- Mass tolerance (100 ppm = 1000.0 ± 0.1 Da)
- A PMF website (Prowl, ProFound, Mascot, etc.)

PMF on the Web

- ProFound
 - http://prowl.rockefeller.edu/prowl-cgi/profound.exe
- Mascot
 - http://www.matrixscience.com
- ProteinProspector
 - http://prospector.ucsf.edu/prospector/mshome.htm

ProFound

0	00	PROWL		
	I ▶ 🙆 🖶 A /	A + 🔄 http://prowl.rockefeller.edu/prowl-cgi/profound.exe	C Qr Google	\sum
ц Ц	Department oell	Biology Login- Depar of Alberta Audiobaba Music Search Bioinform	ati the U of A! Coilgun Basics 2	>>
l	Laboratory of M	Mass Spectrometry and Gaseous Ion Chemistry		
				1
	≻ ProFound	PROFOUNI	D	
	▹ ProteinInfo			
	≻ PeptideMap	General	Digestion	
	▶ PepFrag	Sample	Allow 1 + missed	
	► X! Tandem	ID Detektors (1977) (1979)	maximum cleavages	
	► X! Hunter	Database NCBI nr (2009/10/08)	Enzyme Trypsin +	
	► GPMDB	l axonomy All taxa	For user-defined cleavage, click here.	
		Mass 0 - 3000 kDa	Complete Unmodified	
	> PROWL Home	Protein pI 0 - 14	Modification(s)	
	> Chait Lab	Expect	Iodoacetamide (Cys)	
		Z ishow 10 candidates	Partial Methionine	
	ONO . H.		For more partial modifications, click	
	The The		here.	
	E (Rockefeller) =	Masses		
	24105 1901 51 ³⁵	Average Masses:	Monoisotopic Masses:	
	The Rockefeller University			
	New York, NY 10021			
	(212) 527-6000	Mass tolerance (average): +/- 1	Mass tolerance (monoisotopic): +/-	
		Tolerance unit: 💿 Da 🔿 % 🔿 ppm	Charge state: M 	
		(Identify Protein) Extra Settings Ex	cample Reset Form	4 1

ProFound (PMF)

PROWL (ProFound)

What Are Missed Cleavages?

<u>Sequence</u>

>Protein 1 acedfhsakdfqea sdfpkivtmeeewe ndadnfekqwfe

Tryptic Fragments (no missed cleavage)

acedfhsak (1007.4251) dfgeasdfpk (1183.5266) ivtmeeewendadnfek (2098.8909) gwfe (609.2667)

Tryptic Fragments (1 missed cleavage)

acedfhsak (1007.4251)
dfgeasdfpk (1183.5266)
ivtmeeewendadnfek 2098.8909)
gwfe (609.2667)
acedfhsakdfgeasdfpk (2171.9338)
ivtmeeewendadnfekgwfe (2689.1398)
dfgeasdfpkivtmeeewendadnfek (3263.2997)

ProFound Results

\bigcirc	0 0				PROWL					
	🕨 🙆 🖶 🗛 /	A +	🕙 http:/	/prowl.rockefe	ller.edu/results/SA0C1F675–1458–6A27E7A0.html	(¢ (A, Goog	le	
m	Department oell	Biology	Login- D	epar of Alber	rta Audiobaba Music Search Bioinformati the U of A! Coilg	un Bas	ics 2			>
	Laboratory of M PROWL	Mass S	pectr	ometry aı	nd Gaseous Ion Chemistry					
	≻ ProFound ≻ ProteinInfo				PROFOUND					
	▹ PeptideMap		Prote	ain Candida	tos					
	► PepFrag		Rank	Expectation	Protein Information and Sequence Analyse Tools (T)	%	pI	kDa	R	
	 ➤ X! Tandem > X! Hunter > CPMDR 		+1	9.8×10 ⁻⁷	gi 809440 pdb 1TKA A Chain A, Specificity Of Coenzyme Binding In Thiamin Diphosphate Dependent Enzymes: Crystal Structures Of Yeast Transketolase In Complex With Analogs Of Thiamin Diphosphate	68	6.5	73.56	۲	
	 > PROWL Home > Chait Lab 			-	gi 6325331 ref NP_015399.1 Transketolase, similar to Tkl2p; catalyzes conversion of xylulose-5-phosphate and ribose-5-phosphate to sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate in the pentose phosphate pathway; needed for synthesis of aromatic amino acids; Tkl1p [Saccharomyces cerevisiae]	68	6.5	73.79	۲	
1	Sono Hun			-	gi 3212468 pdb 1AY0 A Chain A, Identification Of Catalytically Important Residues In Yeast Transketolase	64	6.5	73.72	۲	
	E University			-	gi 173022 gb AAA35168.1 transkelotase	43	6.9	73.95	۲	
	2413 1901 5185 +++++		+2	0.24	gi 496731 emb CAA83584.1 nucleoporin [Saccharomyces cerevisiae]	15	5.5	145.39	۲	
	The Rockefeller University 1230 York Avenue, New York, NY 10021 (212) 327-8000			-	gi 6321346 ref NP_011423.1 Essential nucleoporin, catalyzes its own cleavage in vivo to generate a C- terminal fragment that assembles into the Nup84p subcomplex of the nuclear pore complex, and an N- terminal fragment of unknown function that is homologous to Nup100p; Nup145p [Saccharomyces cerevisiae]	13	5.6	145.64	۲	
	Notional Contor for		+3	0.29	gi 227524 prf 1705300A ATP dependent RNA helicase	37	8.4	65.53	۲	
	Research Resources				gi 6324778 ref NP_014847.1 ATP-dependent DEAD (Asp-Glu-Ala-Asp)-box RNA helicase, required for					

MASCOT

000	Matrix Science – Mascot – Peptide Mass Fingerprint	
	Image: Comparison of the second comparis	
m 🎹	Department oell Biology Login- Depar of Alberta Audiobaba Music Search Bioinformati the U of A! Coilgun Basics 2	>>>
{MAT {SCIEN	NCES HOME : WHAT'S NEW : MASCOT : HELP : PRODUCTS : SUPPORT : TRAINING : CONTACT Search	Go
Ma	scot > Peptide Mass Fingerprint	

MASCOT Peptide Mass Fingerprint

Your name			Email	
Search title				
Database	MSDB 🛟			
Taxonomy	All entries		\$)
Enzyme	Trypsin		Allow up to	1 ; missed cleavages
Fixed modifications	Acetyl (K) Acetyl (N-term) Acetyl (Protein N-term) Amidated (C-term) Amidated (Protein C-term)	0	Variable modifications	Acetyl (K) Acetyl (N-term) Acetyl (Protein N-term) Amidated (C-term) Amidated (Protein C-term)
Protein mass	kDa		Peptide tol. ±	1.2 Da 🛟
Mass values	⊙мн+ ⊖м _г ⊖м-н ⁻		Monoisotopic	● Average ○
Data file	Choose File no file selected			
Query NB Contents of this field are ignored if a data file is specified.				
Decoy			Report top	AUTO 🛟 hits
	Start Search			Reset Form

000	Concise Summary Report (Peptide Mass Fingerprint Example)	
	🙆 🖶 A A + 🗽 http://www.matrixscience.com/cgi/master_results.pl?file=/data/F981122.dat 🖒 🔍 Google	\supset
m 🎹	Department oell Biology Login- Depar of Alberta Audiobaba Music Search Bioinformati the U of A! Coilgun Basics 2	>>
(MATTER)		e e

(MATRIX) Mascot Search Results

User	:	
Email	:	
Search title	: Peptide Mass Fingerprint Example	
Database	: SwissProt 51.6 (257964 sequences; 93947433 residues)	
Timestamp	: 19 Feb 2007 at 14:08:10 GMT	
Top Score	: 194 for PML_HUMAN, Probable transcription factor PML (Tripartite motif-containing protein 19) (R	ING fi

Probability Based Mowse Score

Protein score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 67 are significant (p<0.05).

Concise Protein Summary Report

Format As	S Concise Protein Summary	Help
	Significance threshold p< 0.05	Max. number of hits AUTO
Re-Search	All (Search Unmatched)	
1. <u>PM</u> Pr	ML_HUMAN Mass: 97455 Score cobable transcription factor PML	: 194 Expect: le-14 Queries matched: 15 (Tripartite motif-containing protein 19) (RING finger protein 71)
MU	IRC_IDILO Mass: 52994 Scor	e: 51 Expect: 2 Queries matched: 5
UD	P-N-acetylmuramateL-alanine 1	igase (EC 6.3.2.8) (UDP-N-acetylmuramoyl-L-alanine synthetase) - I
DF	O1_RICHE Mass: 104386 Score	e: 50 Expect: 2.8 Queries matched: 6
C		

Mascot Scoring*

- The statistics of peptide fragment matching in MS (or PMF) is very similar to the statistics used in BLAST
- The scoring probability follows an extreme value distribution
- High scoring segment pairs (in BLAST) are analogous to high scoring mass matches in Mascot
- Mascot scoring is much more robust than arbitrary match cutoffs (like % ID)

Extreme Value Distribution*

Extension (# aa)

Mascot/Mowse Scoring*

- The Mascot Score is given as S = -10*Log(P), where P is the probability that the observed match is a random event
- Try to aim for probabilities where P<0.05 (less than a 5% chance the peptide mass match is random)
- Mascot scores greater than 67 are significant (p<0.05).

Advantages of PMF*

- Uses a "robust" & inexpensive form of MS (MALDI)
- Doesn't require too much sample optimization
- Can be done by a moderately skilled operator (don't need to be an MS expert)
- Widely supported by web servers
- Improves as DB's get larger & instrumentation gets better
- Very amenable to high throughput robotics (up to 500 samples a day)
Limitations With PMF*

- Requires that the protein of interest already be in a sequence database
- Spurious or missing critical mass peaks always lead to problems
- Mass resolution/accuracy is critical, best to have <20 ppm mass resolution
- Generally found to only be about 40% effective in positively identifying gel spots

Steps in 2D GE & Peptide ID

- Sample preparation
- Isoelectric focusing (first dimension)
- SDS-PAGE (second dimension)
- Visualization of proteins spots
- Identification of protein spots
- Annotation & spot evaluation

2D Gel Software

Commercial Software

- Melanie 7 (GeneBio Windows only)
 http://world-2dpage.expasy.org/melanie/
- ImageMaster 2D Platinum (GeneBio)
 - http://www.genebio.com/products/melanie/
- Progenesis SameSpots
 - http://www.totallab.com/products/
- PDQuest 7.1 (BioRad Windows only)
 - http://www.bio-rad.com

Common Software Features*

- Image contrast and coloring
- Gel annotation (spot selection & marking)
- Automated peak picking
- Spot area determination (Integration)
 - This allows one to quantify protein samples
- Matching/Morphing/Landmarking 2 gels
- Stacking/Aligning/Comparing gels
- Annotation copying between 2 gels

Expressional Proteomics Summary (1)

- Sample preparation
- 2D electrophoresis or 2D HPLC separation
- Visualization of proteins spots/peaks
- Identification of protein spots/peaks
- Annotation & spot evaluation

3 Kinds of Proteomics

- Structural Proteomics
 - High throughput X-ray Crystallography/Modelling
 - High throughput NMR Spectroscopy/Modelling
- Expressional or Analytical Proteomics
 - Electrophoresis, Protein Chips, DNA Chips, 2D-HPLC
 - Mass Spectrometry, Microsequencing
- Functional or Interaction Proteomics
 - HT Functional Assays, Protein Chips, Ligand Chips
 - Yeast 2-hybrid, Deletion Analysis, Motif Analysis